
Towards Context-Aware Data Refinement
Paul Krogmeier

Purdue University

pkrogmei@purdue.edu

Steven Kidd

Purdue University

kidd9@purdue.edu

Benjamin Delaware

Purdue University

bendy@purdue.edu

Abstract
Fiat is a deductive synthesis framework for deriving correct-by-

construction implementations of abstract data types in Coq. The

framework uses the representation independence provided by data

abstraction to ensure that a derived implementation meets the

specification for any possible client. The restriction that an imple-

mentation works for every client removes potential optimizations

that would be correct for a particular client, however. The pro-

posed talk discuss our ongoing work on formalizing a relaxation of

data refinement in order to enable synthesis of implementations

that are tailored to a particular client, while preserving the same

representation independence guarantees programmers are used to.

1 Introduction
The ability for users to define their own data abstractions is ubiq-

uitous in modern programming languages. From abstract data

types (ADTs) in Clu [11], to classes in Java [5], to typeclasses in

Haskell [14], programmers are accustomed to having some mech-

anism for protecting their code from the details of a particular

implementation of an abstract interface. A key property of all these

is that the host language enforces the abstraction, providing a con-

tract of representation independence [12] shielding a client from

the decisions made by the implementor of a module. This contract

also enables implementors to safely apply any optimizations that

rely on representation invariants. Fiat [3], a Coq library for de-

riving correct-by-construction implementations of ADTs, exploits

this latter property to automatically derive implementations from

specifications using high-level algorithmic and data structure opti-

mizations while ensuring that they are opaque to any client.

To concretize matters, consider the simple functional implemen-

tation of a list of bytes in Fiat shown in Figure 1. The methods of

the ADT allow clients to: create empty ByteStrings, or build them

from lists of bytes; add bytes to, and remove them from, the front

of a ByteString; and concatenate two ByteStrings together. The

definition uses an algebraic datatype for lists to represent the string

of bytes. While it leads to a concise specification of the ADT’s func-

tionality, this choice is much too inefficient for high-performance

applications: the developers of WARP, an http server written in

Haskell which makes heavy uses of bytestrings, note that the list

structure is “too slow” [1] for their requirements. They instead use

an optimized ByteString implementation from the Haskell standard

library, which stores data in manually-allocated memory buffers.

Using Fiat, we were able to derive an efficient implementation of

bytestring with performance comparable to the standard library

implementation from a specification similar to that in Figure 1 [15].

Note that the requirements of the data abstraction contract can

be too strong, however: forcing an implementation to work for any
client can disallow optimizations that may be sound for a particular
client, resulting in less performant code. The authors of WARP

found the interface of the ByteString library too restrictive in many

CoqPL’18, , Los Angeles, CA, USA
2018.

Definition ByteString B Def ADT {
RepType B list Word,
Constructor Empty : rep B [],
Constructor Pack (xs : list Word) : rep B xs,
Method Unpack (this : rep) : rep × list Word B (this, this),
Method Cons (this : rep) (w : Word) : rep B cons w this,
Method Uncons (this : rep) : rep × option Word B
match this with
| nil⇒ ([], None)
| cons x xs⇒ (xs, Some x)
end,

Method Append (this : rep) (r2 : rep) : rep B this ++ r2 }.

Figure 1. Specification of ByteString library.

cases. To skirt this problem, WARP directly manipulates the un-

derlying memory buffers, breaking the data abstraction boundary.

This removes the protections afforded by the ByteString interface,

requiring the developers, not the language, to ensure that invariants

on the data structure are never violated. More concretely, Figure 2

shows the Haskell implementations of two functions that store an

ascii representation of a number in a bytestring. The first function

uses the Cons method from the ByteString interface, while the sec-

ond is from the WARP implementation and operates directly on

the internal ByteString representation. Cons creates a copy of the

tail of the bytestring at each invocation, which is unnecessary in

this case. The WARP implementation avoids this step by allocating

a memory buffer and setting bytes directly using poke, at the cost

of potentially overflowing the buffer if the length was calculated

incorrectly. Benchmarking shows that the second implementation

uses roughly half as much memory as the proper client.

The proposed talk will discuss ongoing work on relaxing the

standard notion of data independence with respect to any client

to one with respect to a specific client, in order to synthesize ADT

implementations in Fiat that are observationally equivalent from

the perspective of that client. The talk will focus on our in-progress

development of a core calculus for deductive synthesis of ADT

implementations, including the corresponding Coq formalization,

a discussion of our notion of context-aware ADT refinement, and

our preliminary experiments using context-aware data refinement

in Fiat.

packIntNaive :: Integral a⇒ a→ ByteString
packIntNaive 0 = Empty
packIntNaive n = Cons (fromIntegral (48 + (mod n 10))) (packIntNaive (div n 10))

packIntWarp :: Integral a⇒ a→ ByteString
packIntWarp 0 = "0"
packIntWarp n = unsafeCreate len go0
where
n' = fromInt n + 1 :: Double
len = ceiling $ logBase 10 n'
go0 p = go n $ p plusPtr (len − 1)
go :: Int a⇒ a→ Ptr Word8→ IO ()
go i p = do

let (d,r) = i divMod 10
poke p (48 + fromIntegral r)
when (d /= 0) $ go d (p plusPtr (−1))

Figure 2. Idealized and WARP ByteString clients.

1

CoqPL’18, , Los Angeles, CA, USA Paul Krogmeier, Steven Kidd, and Benjamin Delaware

2 Formalizing Context-Aware Data Refinement
This section provides more detail on our formalization of a core

calculus for Fiat
1
. Figure 3 presents the syntax and selected typing

and reduction rules for our calculus. The calculus is a variant of

PCF extended with an arbitrary set of algebraic data types T, ab-

stract data types (ADTs), and, most importantly, a nondeterministic

choice operator, { x : τ | P (x, e1 , ..., en)}. This operator evaluates to any

value that satisfies the predicate P (x, e1 , ..., en). Intuitively, a choice

expression precisely spells out what is to be computed, but its oper-

ational semantics, given in ChoiceR, do not specify how to compute

it. Programs in this calculus consist of an initial sequence of ADT

definitions followed by a client program that calls the operations

of those ADTs. The semantics of these operations is defined with

respect to a distinguished representation type, rep.
We have proven progress and preservation for the calculus in

Figure 3. The former requires a slight adjustment to the standard

statement, as terms with choice operators may be well typed but

unable to reduce. This can happen when the predicate used in a

choice expression is uninhabited. To capture this possibility, we

update the definition of progress to use a hasChoice predicate over

terms:

Theorem 2.1 (Progress). A program that is well typed under an

empty environment is either a value, takes a step, or contains a

choice operator.

⊢ p : τ → value p ∨ ∃p′ .p −→ p′ ∨ hasChoice p

We say that a program p2 refines another program p1 when the

possible evaluations of the former are a subset of the latter:

p1 ⊇ p2 ≜ ∀v. p2 −→ v → p1 −→ v

Definition 2.2 (ADT Refinement). An ADT an refines an ADT ao
if every operation of an produces a subset of the concrete values

produced by that operation in ao and guarantees similarity of their

respective representation types under an abstraction relation ≈,

when applied to related arguments:

ao ⊇ an ≡ ∃ ≈ : repo → repn → Prop.

∀ op ro rn x r′n v. ro ≈ rn → an .op(rn, x) −→ (r′n, v)

→ ∃r′o . ao .op(ro, x) −→ (r′o, v) ∧ r′o ≈ r′n

Definition 2.3 (Soundness of Data Refinement). We say that sub-

stituting an ADT Ii in a well-formed client program with a refined

implementation I′i is sound when it produces a refined program:

let X1B I1 in ... let X1B I1 in ...

let XiB Ii in ... ⊇ let XiB Ii ' in ...

let XnB In in e let XnB In in e

Proposition 2.4 (Representation Independence). ADT refinement

guarantees soundness of substitution for any client program:

∀IoIn .Io ⊇ In → p ⊇ p[Io 7→ In]

We are currently developing a type system for our refinement

calculus which gathers information about the usage of ADT oper-

ations via a set of constraints, Ψ. The typing judgement has the

form ∆; Γ ⊢X e : τ | Ψ. We plan to use these constraints in an

extended definition of ADT refinement that accounts for the usage

of an ADT’s operations, in order to show a refinement is sound

with respect to a particular client.

1
Our in-progress Coq formalization of this calculus is available at: https://github.com/
paulkrog/formalized-fiat.

τ :B τ → τ | X | T (∗ Algebraic Data Types ∗) | ∃ X.τ

e :B x | C (e1 , ..., en) | e1e2 | fix f (x : τ1) : τ2B e
| match e with | C1(x1 , ..., xn) 7→ e1 | ... | Cn(x1 , ..., xn) 7→ enend
| { x : τ | P (x, e1 , ..., en) } (∗ Choice Operator ∗)

I :B ADT { rep B τr ;
op1B λ (r1 ... rn : rep) (x1 : τ1) ... (xn : τn) : rep ×τ B e1 ;
...
opnB λ (r1 ... rn : rep) (x1 : τ1) ... (xn : τn) : rep ×τ B en

} as { ∃ X. (X → τ → (X × τ)) × ... ×(X → τ → (X × τ))}

p :B let {X, x} B I in p | e

Γ ⊢ match Ci(v1 , ..., vn)with | C1(x1 , ..., xn)7→ e1 | ... | Cn(x1 , ..., xn)7→ enend
−→ ei[x 7→ v]

(MatchR)

Γ ⊢ P (v, v1 , ..., vn)

Γ ⊢ {x : τ | P (x, v1 , ..., vn)} −→ v
(ChoiceR)

let {X, x} B I in p −→ p[x 7→ e][X 7→ repI]
(ProgLetR)

∆; Γ ⊢ e : T Ci : τi→ T ∆; Γ, [x 7→ τi] ⊢ ei : τ

∆; Γ ⊢ match e with | C1(x1 , ..., xn)7→ e1 | ... | Cn(x1 , ..., xn) 7→ enend : τ
(MatchT)

∆; Γ ⊢ P : τ → τ1→ ... τn→ Prop ∆; Γ ⊢ ei : τi

∆; Γ ⊢ {x : τ | P (x, e1 , ..., en)} : τ
(ChoiceT)

∆; Γ ⊢ I : ∃ X.τ ∆, X; Γ, x : τ ⊢ p : τ2

∆; Γ ⊢ let {X, x} B I in p : τ2[X 7→ repI]
(PLetT)

Figure 3. Syntax and select reduction and typing rules for core Fiat

calculus.

Proposition 2.5 (Soundness of context-aware ADT refinement).
If a program e is well-formed subject to some set of contraints Ψ on

ADT Io, ∆; Γ ⊢Io e : τ | Ψ, and we are able to construct a refined

ADT I′o, subject to those constraints, Ψ ⊢ Io ⊇ I′o, then it is sound

to substitute I′o for Io in e.

Given a proof of the above proposition, a Fiat derivation of an

ADT implementation can take advantage of the information of

how ADT operations are called in order to justify more nuanced

optimization strategies.

3 Related Work
The concept of deriving implementations that are correct by con-

struction via stepwise refinement has been around since at least

the late sixties [4, 16]. Hoare [6] first proposed specifying and veri-

fying algorithms at a high level using abstract data representations

which could be transported to more efficient implementations via

abstraction functions. Data refinement [13] frameworks exist for

both Coq [2] and Isabelle [8–10]. Both frameworks transport proofs

about abstract, proof-oriented data representations to more efficient

implementations via unconditional refinement of data types.

2

https://github.com/paulkrog/formalized-fiat
https://github.com/paulkrog/formalized-fiat

CoqPL’18, , Los Angeles, CA, USA

References
[1] Tavish Armstrong. 2013. The Performance of Open Source Applications. Lulu.com.

[2] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. 2013. Refinements for Free!

In Certified Programs and Proofs, Georges Gonthier and Michael Norrish (Eds.).

Lecture Notes in Computer Science, Vol. 8307. Springer International Publishing,

147–162. https://doi.org/10.1007/978-3-319-03545-1_10
[3] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015.

Fiat: Deductive Synthesis of Abstract Data Types in a Proof Assistant. In Proc.
POPL.

[4] Edsger W. Dijkstra. 1967. A constructive approach to the problem of program cor-

rectness. (Aug. 1967). http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.
PDF Circulated privately.

[5] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2005. Java(TM) Lan-
guage Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley

Professional.

[6] J. He, C.A.R. Hoare, and J.W. Sanders. 1986. Data refinement refined. In ESOP
86, Bernard Robinet and Reinhard Wilhelm (Eds.). Lecture Notes in Computer

Science, Vol. 213. Springer Berlin Heidelberg, 187–196.

[7] Iron Lambda [n. d.]. ([n. d.]). http://iron.ouroborus.net/.
[8] Peter Lammich. 2013. Automatic Data Refinement. In Interactive Theorem Proving.

Springer Berlin Heidelberg.

[9] Peter Lammich. 2015. Refinement to Imperative/HOL. In Interactive Theorem
Proving, Christian Urban and Xingyuan Zhang (Eds.). Lecture Notes in Computer

Science, Vol. 9236. Springer International Publishing, 253–269. https://doi.org/
10.1007/978-3-319-22102-1_17

[10] Peter Lammich and Thomas Tuerk. 2012. Applying Data Refinement for Monadic

Programs to HopcroftâĂŹs Algorithm. In Interactive Theorem Proving, Lennart
Beringer and Amy Felty (Eds.). Lecture Notes in Computer Science, Vol. 7406.

Springer Berlin Heidelberg, 166–182.

[11] Barbara Liskov and Stephen Zilles. 1974. Programming with Abstract Data Types.

In Proceedings of the ACM SIGPLAN Symposium on Very High Level Languages.
ACM, New York, NY, USA, 50–59. https://doi.org/10.1145/800233.807045

[12] John C. Mitchell. 1986. Representation Independence and Data Abstraction.

In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’86). ACM, New York, NY, USA, 263–276. https:
//doi.org/10.1145/512644.512669

[13] Carroll Morgan. 1993. The refinement calculus. In Program Design Calculi.
Springer, 3–52.

[14] P. Wadler and S. Blott. 1989. How to Make Ad-hoc Polymorphism Less Ad Hoc.

In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’89). ACM, New York, NY, USA, 60–76. https:
//doi.org/10.1145/75277.75283

[15] JohnWiegley and Benjamin Delaware. 2017. Using Coq toWrite Fast and Correct

Haskell. In Proceedings of the 2017 ACM SIGPLAN Symposium on Haskell (Haskell
’17). ACM, New York, NY, USA.

[16] Niklaus Wirth. 1971. Program development by stepwise refinement. Commun.
ACM 14, 4 (1971), 221–227.

3

https://doi.org/10.1007/978-3-319-03545-1_10
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://iron.ouroborus.net/
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1145/800233.807045
https://doi.org/10.1145/512644.512669
https://doi.org/10.1145/512644.512669
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283

	Abstract
	1 Introduction
	2 Formalizing Context-Aware Data Refinement
	3 Related Work
	References

