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Differential privacy is a mathematical framework for developing statistical computations with provable

guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which

has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not

have a general accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to

algorithm and are not instantiations of a general definition. We identify program discontinuity as a common

theme in existing ad hoc definitions and introduce an alternative notion of accuracy parametrized by, what we

call, distance to disagreement — the distance to disagreement of an input 𝑥 w.r.t. a deterministic computation

𝑓 and a distance 𝑑 , is the minimal distance 𝑑 (𝑥,𝑦) over all 𝑦 such that 𝑓 (𝑦) ≠ 𝑓 (𝑥). We show that our notion of

accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims

for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some

cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then,

we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally,

or assuming Schanuel’s conjecture). We implement our decision procedure and experimentally evaluate the

effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms

from the literature.

CCS Concepts: • Security and privacy → Logic and verification; • Software and its engineering →
Formal software verification.

Additional Key Words and Phrases: accuracy, differential privacy, decidability
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1 INTRODUCTION
Differential privacy [Dwork et al. 2006; Dwork and Roth 2014] is a mathematical framework

for performing privacy-preserving computations over sensitive data. One important feature of

differential privacy algorithms is their ability to achieve provable individual privacy guarantees

and at the same time ensure that the outputs are reasonably accurate. In the case of privacy, these

guarantees relate executions of the differentially private algorithm on adjacent databases. These

privacy guarantees are an instance of relational properties, and they have been extensively studied

in the context of program verification [Albarghouthi and Hsu 2018; Barthe et al. 2020a, 2013;

Gaboardi et al. 2013; Reed and Pierce 2010; Zhang and Kifer 2017] and program testing [Bichsel

et al. 2018; Ding et al. 2018]. In the case of accuracy, these guarantees relate the execution of

the differentially private algorithm to that of an “ideal” algorithm, which can be assumed to be

deterministic. Typically, “ideal” algorithms compute the true value of a statistical computation,
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while differentially private algorithms compute noisy versions of the right answer. The precise

relationship between the output of the “ideal” algorithm and the differentially private one varies

from algorithm to algorithm, and no general definition of accuracy has been proposed in this

context. In some cases, the definition of accuracy is similar to the one used in the context of

randomized algorithm design [Motwani and Raghavan 1995], where we require that the output of

the differentially private algorithm be close to the true output (say within distance 𝛾 ) with high

probability (say at least 1 − 𝛽). Such a notion of accuracy is similar to computing error bounds, and

there has been work on formally verifying such a definition of accuracy on some examples [Barthe

et al. 2016b; Smith et al. 2019; Vesga et al. 2019]. Unfortunately, prior work on formal verification

of accuracy suffers from two shortcomings:

• the lack of a general definition for accuracy: as pointed out, each differential privacy algorithm

in the literature has its own specific accuracy claim that is not an instantiation of a general

definition. The lack of a general definition for accuracy means that the computational problem

of “verifying accuracy” has not been defined, which prevents its systematic study.

• imprecise bounds: accuracy bounds in theoretical papers are often established using concen-

tration bounds, e.g. Chernoff bound, by hand. Existing verification frameworks, with the

exception of Vesga et al. [2019], cannot be used to verify accuracy claims that are established

using concentration bounds. This is due to the fact that applying concentration bounds

generally requires proving independence, which is challenging. Thus, the bounds usually

verified automatically (with the exception of Vesga et al. [2019]) by the existing techniques

are weaker than those known in literature.

This paper overcomes both shortcomings by proposing a general notion of accuracy and by proving

decidability of accuracy for a large class of algorithms that includes many differentially private

algorithms from the literature.

Technical contributions. Our focus is the verification of accuracy claims for differential privacy

algorithms that aim to bound the error of getting the correct answer. Other notions of utility or

accuracy, such as those that depend on variance and other moments are out of the scope of this

paper. Our contributions in this space are three-fold: (a) we give a definition of accuracy that

captures accuracy claims known in the literature, (b) study the computational problem of checking

accuracy, as identified by our definition of accuracy, and (c) perform an experimental evaluation of

our decision procedure.

General definition of accuracy. The starting point of our work is the (well-known) observation
that the usual definition used in theoretical computer science to measure the utility of a randomized

algorithm (informally discussed above) fails to adequately capture the accuracy claims made for

many differential privacy algorithms. To see why this is the case, consider Sparse (also called Sparse
Vector Mechanism or SVT). The problem solved by Sparse is the following: given a threshold 𝑇 , a

database 𝑥 , and a list of queries of length𝑚, output the list of indices of the first 𝑐 queries whose
output on 𝑥 is greater than or equal to 𝑇 . Sparse solves this problem while maintaining the privacy

of the database 𝑥 by introducing noise to the query answers as well as to 𝑇 when comparing them.

Because of this, Sparse’s answers cannot be accurate with high probability, if the answers to the

query are very close to 𝑇 — the correct answer is “discontinuous” near 𝑇 while the probability

distributions of the introduced noise are continuous functions. Thus, we can expect Sparse to be

accurate only when all query answers are bounded away from 𝑇 . This is what the known accuracy

claim in the literature proves.

The first contribution of this paper is a more general notion of accuracy that takes into account

the distance to disagreement w.r.t. the “ideal” algorithm that is necessary in accuracy claims for
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Deciding Accuracy 1:3

differential privacy algorithms. Informally, an input 𝑢 of a deterministic computation 𝑓 has distance

to disagreement 𝛼 (with respect to a distance function 𝑑 on the input space) if 𝛼 is the largest

number such that whenever 𝑓 (𝑢) ≠ 𝑓 (𝑣) then 𝑑 (𝑢, 𝑣) ≥ 𝛼. This notion of distance to disagreement

is inspired from the Propose-Test-Release mechanism [Dwork and Roth 2014], but we use it for the

purpose of accuracy rather than privacy. More precisely, our notion of accuracy requires that for

every input 𝑢 whose distance to disagreement is greater than 𝛼 , the output of the differentially

private algorithm be with in a distance of 𝛾 from the correct output, with probability at least 1 − 𝛽 .
The traditional accuracy definition, used in the literature on randomized algorithms, is obtained

by setting 𝛼 = 0. Our definition captures most ad hoc accuracy claims known in the literature for

different differential privacy algorithms. Our definition is reminiscent of accuracy definitions that

use three parameters in Blum et al. [2013] and Bhaskar et al. [2010]. However, neither of these

definitions have a notion like distance to disagreement
1
.

We show that the additional degree of flexibility in our definition of accuracywith the introduction

of parameter 𝛼 , can be exploited to improve known accuracy bounds for NumericSparse, a variant
of Sparse that returns the noised query answers when they are above a threshold. Specifically, the

accuracy bound from Dwork and Roth [2014] translates in our framework to (𝛼, 𝛽, 𝛼)-accuracy for

all 𝛼 , and for 𝛽 = 𝛽0 (𝛼) for some function 𝛽0. In contrast, we can prove (𝛼, 𝛽,𝛾)-accuracy for all

𝛼,𝛾 and 𝛽 = 𝛽1 (𝛼,𝛾). Our result is more general and more precise, since 𝛽1 (𝛼, 𝛼) is approximately

1

2
𝛽0 (𝛼) for all values of 𝛼 .

Deciding Accuracy. Establishing a general definition of accuracy allows us to study the de-

cidability of the problem of checking accuracy. Differential privacy algorithms are typically

parametrized by the privacy budget 𝜖 , where program variables are typically sampled from distribu-

tions whose parameters depend on 𝜖 . Thus, verifying a property for a differential privacy algorithm

is to verify an infinite family of programs, obtained by instantiating the privacy budget 𝜖 to different

values. We, therefore, have two parametrized verification problems, which we respectively call the

single-input and all-inputs problems. These problems state: given a parametrized program 𝑃𝜖 , an

interval 𝐼 and accuracy bounds (𝛼, 𝛽,𝛾) that may depend on 𝜖 , is 𝑃𝜖 (𝛼, 𝛽,𝛾)-accurate at input 𝑢
(resp. at all inputs) for all possible values of 𝜖 ∈ 𝐼?

We first show that accuracy is in general undecidable, both for the single-input and all-inputs

variants. Therefore, we focus on decidability for some specific class of programs. We follow the

approach from Barthe et al. [2020a], where the authors propose a decision procedure for (𝜖, 𝛿)-
differential privacy of a non-trivial class of (parametric) programs, DiPWhile, with a finite number

of inputs and output variables taking values in a finite domain. Specifically, we carve out a class

of programs, called DiPWhile+, whose operational semantics have a clever encoding as a finite

state discrete-time Markov chain. Then, we use this encoding to reduce the problem of accuracy to

the theory of reals with exponentials. Our class of programs is larger than the class of programs

DiPWhile; it supports the use of a finite number of real input and real output variables and permits

the use of real variables as means of Laplace distributions when sampling values.

We show that checking accuracy for both single-input and all-inputs is decidable for DiPWhile+
programs including those with real input and output variables, assuming Schanuel’s conjecture.

Schanuel’s conjecture is a long-standing open problem in transcendental number theory, with deep

applications in several areas of mathematics. In our proof, we use a celebrated result of MacIntyre

andWilkie [1996], which shows that Schanuel’s conjecture entails decidability of the theory of reals

with exponentials. Our decidability proof essentially encodes the exact probability of the algorithm

yielding an output that is 𝛾 away from the correct answer. As we calculate exact probabilities, we

do not have to resort to concentration bounds for verifying accuracy.

1
A more detailed comparison with these definitions can be found in Section 2.
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We also identify sufficient conditions under which the single-input problem is decidable for

DiPWhile+ programs unconditionally, i.e., without assuming Schanuel’s conjecture. These uncondi-

tional decidability results rely on two crucial observations. First, to check accuracy at specified

input 𝑢, it suffices to set 𝛼 to the distance to disagreement for 𝑢. This is because 𝛽 decreases when

𝛼 increases. Secondly, given a DiPWhile+ program 𝑃 and real number 𝛾, we can often construct

a new DiPWhile+ program 𝑃new
such that 𝑃new

outputs true on input 𝑢 if and only if the output

produced by 𝑃 on 𝑢 is at most 𝛾 away from the correct answer. This allows us only to consider the

programs that produce outputs from a finite domain. The single-input accuracy problem can then

be expressed in McCallum and Weispfenning [2012]’s decidable fragment of the theory of reals

with exponentials.

An immediate consequence of our unconditional decidability results is that the all-inputs accuracy
problem is decidable for programs when inputs and outputs that come from a finite domain. This

is essentially the class of programs DiPWhile, for which differential privacy was shown to be

decidable in Barthe et al. [2020a]. Our decidability results are summarized in Table 1 on Page 19.

Experimental Evaluation. We adapt theDiPC tool from Barthe et al. [2020a] to verify accuracy

bounds at given inputs and evaluate it on many examples from the literature. Our adaptation

takes as input a program in DiPWhile+, constructs a sentence in the decidable McCallum and

Weispfenning [2012] fragment of the theory of reals with exponentials and calls Mathematica® to

see if the sentence is valid. Using the tool, we verified the accuracy of Sparse, NoisyMax, Laplace
Mechanism, and NumericSparse at specified inputs. Our tool also found counter-examples for

Sparse and SparseVariant, when accuracy claims do not hold. In addition, our tool is able to verify

improvements of accuracy bounds for NoisyMax over known accuracy bounds in the literature

given in this paper. Finally, we experimentally found better potential accuracy bounds for our

examples by running our tool on progressively smaller 𝛽 values.

2 DEFINITION OF ACCURACY
In the differential privacy model [Dwork et al. 2006], a trusted curator with access to a database

returns answers to queries made by possibly dishonest data analysts that do not have access to the

database. The task of the curator is to return probabilistically noised answers so that data analysts

cannot distinguish between two databases that are adjacent, i.e. only differ in the value of a single

individual. However, an overriding concern is that, in spite of the noise, responses should still be

sufficiently close to the actual answers to ensure the usefulness of any statistics computed on the

basis of those responses. This concern suggests a requirement for accuracy, which is the focus of

this paper. The definition of accuracy, one of the main contributions of this paper, is presented here.

We start by considering the usual definition used in theoretical computer science [Motwani

and Raghavan 1995] to characterize the quality of a randomized algorithm 𝑃 that approximately

computes a function 𝑓 . Informally, such a definition demands that, for any input 𝑥 , the output

𝑃 (𝑥) be “close” to function value 𝑓 (𝑥) with “high probability”. In these cases, “close” and “high

probability” are characterized by parameters (say) 𝛾 and 𝛽 . Unfortunately, such a definition is too

demanding, and is typically not satisfied by differential privacy algorithms. We illustrate this with

the following example.

Example 1. Consider Sparse (also called Sparse Vector Technique or SVT). The problem solved by

Sparse is the following: given a threshold 𝑇 , a database 𝑥 and a list of queries of length𝑚, output

the list of indices of the first 𝑐 queries whose output on 𝑥 is above 𝑇 . Since the goal of Sparse is to
maintain privacy of the database 𝑥 , Sparse introduces some small noise to the query answers as

well as to 𝑇 before comparing them, and outputs the result of the “noisy” comparison; the exact

pseudocode is given in Figure 2a. Observe that if the answers to queries are very close to 𝑇 , then

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.
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Sparse’s answer will not be “close” to the right answer (for non-noisy comparison) since the noisy

comparison could give any result. On the other hand, if the query answer is far from 𝑇 , then the

addition of noise is unlikely to change the result of the comparison, and Sparse is likely to give

the right answer with high probability (despite the noise). Thus, Sparse’s accuracy claims in the

literature do not apply to all inputs, but only to those databases and queries whose answers are far

away from the threshold 𝑇 .

This example illustrates that the accuracy claims in differential privacy can only be expected to

hold for inputs that are far away from other inputs that disagree — in Example 1 above, accuracy

claims don’t hold when query answers are close to the threshold because these inputs are close

to other inputs in which the comparison with the threshold will give the opposite result. This

problem motivates our general definition of accuracy, which captures all accuracy claims for several

differential privacy algorithms. Before presenting the formalization, we introduce some notation

and preliminaries that will be useful.

Notation. We denote the set of real numbers, rational numbers, natural numbers, and integers by

R,Q,N, andZ, respectively.We also useR∞ = R∪{∞},R>0 = {𝑥 ∈ R |𝑥 > 0},R≥0 = {𝑥 ∈ R |𝑥 ≥ 0}.
The Euler constant is denoted by 𝑒 . For any𝑚 > 0 and any vector 𝑎 = (𝑎1, ..., 𝑎𝑚) ∈ Z𝑚 (or, 𝑎 ∈ R𝑚 ,

𝑎 ∈ Q𝑚 , 𝑎 ∈ N𝑚), recall that | |𝑎 | |
1
=
∑

1≤𝑖≤𝑚 |𝑎𝑖 | and | |𝑎 | |∞ = max{|𝑎𝑖 | |1 ≤ 𝑖 ≤ 𝑚}.
A differential privacy algorithm is typically a probabilistic program whose behavior depends on

the privacy budget 𝜖 . When we choose to highlight this dependency we denote such programs as

𝑃𝜖 , and when we choose to ignore it, e.g. when 𝜖 has been fixed to a particular value, we denote

them as just 𝑃 . Since 𝑃 is a probabilistic program, it defines a randomized function [[𝑃]], i.e., on an

input 𝑢 ∈ U (whereU is the set of inputs), [[𝑃]] (𝑢) is a distribution on the set of outputsV . We

will often abuse notation and use 𝑃 (𝑢) when we mean [[𝑃]] (𝑢), to reduce notational overhead. For

a measurable set 𝑆 ⊆ V , the probability that 𝑃 outputs a value in 𝑆 on input 𝑢 will be denoted as

Prob(𝑃 (𝑢) ∈ 𝑆); when 𝑆 is a singleton set {𝑣} we write Prob(𝑃 (𝑢) = 𝑣) instead of Prob(𝑃 (𝑢) ∈ {𝑣}).
The accuracy of a differential privacy algorithm 𝑃 is defined with respect to an “ideal” algorithm

that defines the function that 𝑃 is attempting to compute while maintaining privacy. We denote

this “ideal” function as det(𝑃). It is a deterministic function, and so det(𝑃) : U → V .

To define accuracy, we need a measure for when inputs/outputs are close. On inputs, the function

measuring closeness does not need to be a metric in the formal sense. We assume 𝑑 : U×U → R∞
is a “distance” function defined onU, satisfying the following properties: for all𝑢,𝑢 ′ ∈ U,𝑑 (𝑢,𝑢 ′) =
𝑑 (𝑢 ′, 𝑢) ≥ 0, 𝑑 (𝑢,𝑢) = 0. For any 𝑋 ⊆ U and any 𝑢 ∈ U, we let 𝑑 (𝑢,𝑋 ) = inf𝑢′∈𝑋 𝑑 (𝑢,𝑢 ′). On
outputs, we will need the distance function to be dependent on input values. Thus, for every 𝑢 ∈ U,

we also assume that there is a distance function 𝑑 ′𝑢 defined onV . For any 𝑣 ∈ V, 𝑢 ∈ U and for

any 𝛾 ∈ R≥0
, let 𝐵(𝑣,𝑢,𝛾) = {𝑣 ′ ∈ V | 𝑑 ′𝑢 (𝑣, 𝑣 ′) ≤ 𝛾}. In other words, 𝐵(𝑣,𝑢,𝛾) is a ball of radius

𝛾 around 𝑣 defined by the function 𝑑 ′𝑢 . We next introduce a key notion that we call distance to
disagreement.

Definition 1. For a randomized algorithm 𝑃 and input 𝑢 ∈ U, the distance to disagreement of 𝑃
and 𝑢 with respect to det(𝑃) is the minimum of the distance between 𝑢 and another input 𝑢 ′ such
that the outputs of det(𝑃) on 𝑢 and 𝑢 ′ differ. This can defined precisely as

dd(𝑃,𝑢) = 𝑑 (𝑢, {U − det(𝑃)−1 (det(𝑃) (𝑢))}).
We now have all the components we need to present our definition of accuracy. Intuitively, the

definition says that a differential privacy algorithm 𝑃 is accurate with respect to det(𝑃) if on all

inputs 𝑢 that have a large distance to disagreement (as measured by parameter 𝛼), 𝑃 ’s output on 𝑢 is

close (as measured by parameter 𝛾 ) to det(𝑃) (𝑢) with high probability (as measured by parameter

𝛽). This is formalized below.
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Definition 2. Let 𝛼, 𝛽,𝛾 ∈ R≥0
such that 𝛽 ∈ [0, 1]. Let 𝑃 be a differential privacy algorithm on

inputsU and outputsV . 𝑃 is said to be (𝛼, 𝛽,𝛾)-accurate at input 𝑢 ∈ U if the following condition

holds: if dd(𝑃,𝑢) > 𝛼 then Prob(𝑃 (𝑢) ∈ 𝐵(det(𝑃) (𝑢), 𝑢,𝛾)) ≥ 1 − 𝛽.
We say that 𝑃 is (𝛼, 𝛽,𝛾)-accurate if for all 𝑢 ∈ U, 𝑃 is (𝛼, 𝛽,𝛾)-accurate at 𝑢.

Observe that when 𝛼 = 0, (𝛼, 𝛽,𝛾)-accuracy reduces to the standard definition used to measure

the precision of a randomized algorithm that approximately computes a function [Motwani and

Raghavan 1995]. All three parameters 𝛼, 𝛽 , and 𝛾 play a critical role in capturing the accuracy

claims known in the literature. As we will see in Section 3, we show that the Laplace and Expo-
nentialMechanisms are (0, 𝛽, 𝛾)-accurate, AboveThreshold and Sparse are (𝛼, 𝛽, 0)-accurate, and
NumericSparse is (𝛼, 𝛽,𝛾)-accurate. Finally, observe that as 𝛼,𝛾 increase the error probability 𝛽

decreases.

Comparison with alternative definitions. As previously noted, it is well-known that the usual

definition of accuracy from randomized algorithms does not capture desirable notions of accuracy

for differentially private computations, and a number of classic papers from the differential privacy

literature have proposed generalizations of the usual notion of accuracy with a third parameter. For

instance, Blum et al. [2013] introduce a relaxed notion of accuracy in order to study lower bounds;

their definition is specialized to mechanisms on databases, and given with respect to a class C of

(numerical) queries. Informally, a mechanism 𝐴 is accurate if for every query 𝑄 in the class C and

database 𝐷 , there exists a nearby query𝑄 ′ such that with high probability the output𝑄 (𝐷) is close
to 𝑄 ′(𝐷). Their definition is of a very different flavour, and is not comparable to ours. Another

generalization is given in Bhaskar et al. [2010], for algorithms that compute frequent items. These

algorithms take as input a list of items and return a list of most frequent items and frequencies.

Their notion of usefulness requires that with high probability the frequencies are close to the true

frequency globally, and for each possible list of items. None of these definitions involve a notion

like distance to disagreement.

3 EXAMPLES
The definition of accuracy (Definition 2) is general enough to capture all accuracy claims we know

of in the literature. It’s full generality seems to be needed in order to capture known results. In

this section, we illustrate this by looking at various differential privacy mechanisms and their

accuracy claims. As a byproduct of this investigation, we also obtain tighter and better bounds for

the accuracy of NumericSparse.

3.1 Laplace Mechanism
The Laplace mechanism [Dwork et al. 2006] is the simplest differential privacy algorithm that tries

to compute, in a privacy preserving manner, a numerical function 𝑓 : U → V , whereU = N𝑛

andV = R𝑘 , where 𝑘 > 0. The algorithm adds noise sampled from the Laplace distribution. Let us

begin by defining this distribution.

Definition 3 (Laplace Distribution). Given 𝜖 > 0 and mean 𝜇, let Lap(𝜖, 𝜇) be the continuous
distribution whose probability density function (p.d.f.) is given by

𝑓𝜖,𝜇 (𝑥) =
𝜖

2

𝑒−𝜖 |𝑥−𝜇 | .

Lap(𝜖, 𝜇) is said to be the Laplace distribution with mean 𝜇 and scale parameter
1

𝜖
.

It is sometimes useful to also look at the discrete version of the above distribution. Given 𝜖 > 0

and mean 𝜇, let DLap(𝜖, 𝜇) be the discrete distribution on Z, whose probability mass function
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(p.m.f.) is

𝑓𝜖,𝜇 (𝑖) =
1 − 𝑒−𝜖
1 + 𝑒−𝜖 𝑒−𝜖 |𝑖−𝜇 | .

DLap(𝜖, 𝜇) is said to be the discrete Laplace distribution with mean 𝜇 and scale parameter
1

𝜖
.

On an input 𝑢 ∈ U, instead of outputting 𝑓 (𝑢), the Laplace mechanism (𝑃
Lap
𝜖 ) outputs the value

𝑓 (𝑥) + (𝑌1, . . . 𝑌𝑘 ), where each 𝑌𝑖 is an independent, identically distributed random variable from

Lap(( 𝜖
Δ𝑓 , 0)); here Δ𝑓 is the sensitivity of 𝑓 , which measures how 𝑓 ’s output changes as the input

changes [Dwork and Roth 2014].

Theorem 3.8 of Dwork and Roth [2014] establishes the following accuracy claim for Laplace.

Theorem 1 (Theorem 3.8 of Dwork and Roth [2014]). For any 𝑢 ∈ U, and 𝛿 ∈ (0, 1]

𝑃𝑟

[
| |𝑓 (𝑢) − 𝑃Lap

𝜖 (𝑢) | |∞ ≥ ln

(
𝑘

𝛿

) (
Δ𝑓

𝜖

)]
≤ 𝛿

We can see that Theorem 1 can be rephrased as an accuracy claim using our definition. Observe

that here det(𝑃Lap
𝜖 ) = 𝑓 . Let the distance function 𝑑 onU be defined by 𝑑 (𝑢,𝑢 ′) = 0 if 𝑢 = 𝑢 ′ and

𝑑 (𝑢,𝑢 ′) = 1 otherwise. For 𝑢 ∈ U, let the distance function 𝑑 ′𝑢 on V be defined by 𝑑 ′𝑢 (𝑣, 𝑣 ′) =

| |𝑣 − 𝑣 ′ | |∞. Now, it is easily seen that the above theorem is equivalent to stating that the Laplace
mechanism is (0, 𝛿, 𝛾)-accurate for all 𝜖,𝛾 , where 𝛿 = 𝑘𝑒

− 𝛾𝜖

Δ𝑓
.

3.2 Exponential Mechanism
Consider the input spaceU = N𝑛 . Suppose for an input 𝑢 ∈ U, our goal is to output a value in

a finite setV that is the “best” output. Of course for this to be a well-defined problem, we need

to define what we mean by the “best” output. Let us assume that we are given a utility function

𝐹 : U ×V → R that measures the quality of the output. Thus, our goal on input 𝑢 is to output

arg max𝑣∈V 𝐹 (𝑢, 𝑣) 2.
The Exponential mechanism [McSherry and Talwar 2007] (𝑃

Exp
𝜖 ) solves this problem while guar-

anteeing privacy by sampling a value inV based on the exponential distribution. This distribution
depends on the utility function 𝐹 and is defined below.

Definition 4 (Exponential Distribution). Given 𝜖 > 0 and 𝑢 ∈ U, the discrete distribution

Exp(𝜖, 𝐹,𝑢) onV is given by the probability mass function:

ℎ𝜖,𝐹,𝑢 (𝑣) =
𝑒𝜖𝐹 (𝑢,𝑣)∑

𝑣∈V 𝑒𝜖𝐹 (𝑢,𝑣)
.

On an input 𝑢 ∈ U, the Exponential mechanism outputs 𝑣 ∈ V according to distribution

Exp( 𝜖
Δ𝐹 , 𝐹 ,𝑢), where Δ𝐹 is the sensitivity of 𝐹 . Taking det(𝑃Exp

𝜖 ) to be the function such that

det(𝑃Exp
𝜖 ) (𝑢) = arg max𝑣∈V 𝐹 (𝑢, 𝑣), the following claim about the Exponentialmechanism is proved

in Corollary 3.12 of Dwork and Roth [2014].

Theorem 2 (Corollary 3.12 of Dwork and Roth [2014]). For any 𝑢 and any 𝑡 > 0,

𝑃𝑟

[
𝐹 (𝑢, 𝑃Exp

𝜖 (𝑢)) ≤ 𝐹 (𝑢, det(𝑃Exp
𝜖 ) (𝑢)) −

2Δ𝐹

𝜖
(ln( |V|) + 𝑡)

]
≤ 𝑒−𝑡

Again we can see Theorem 2 as an accuracy claim by our definition. Let the distance function

𝑑 on U be defined by 𝑑 (𝑢,𝑢 ′) = 0 if 𝑢 = 𝑢 ′ and 𝑑 (𝑢,𝑢 ′) = 1 otherwise. For any 𝑢 ∈ U, take

the distance metric 𝑑 ′𝑢 to be 𝑑 ′𝑢 (𝑣, 𝑣 ′) = |𝐹 (𝑢, 𝑣) − 𝐹 (𝑢, 𝑣 ′) |, for 𝑣, 𝑣 ′ ∈ V . Theorem 2 can be seen

2
If there are multiple 𝑣 that maximize the utility, there is a deterministic criterion that disambiguates.
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as saying that, for all 𝜖 and 𝑡 , the Exponential mechanism is (0, 𝛽, 𝛾)-accurate where 𝛽 = 𝑒−𝑡 ,
𝛾 = 2Δ𝐹

𝜖
(ln |V | + ln( 1

𝛽
)).

3.3 NoisyMax
Consider the following problem. Given a sequence (𝑞1, 𝑞2, . . . , 𝑞𝑚) of elements (with each 𝑞𝑖 ∈
R), output the smallest index of an element whose value is the maximum in the sequence. The

algorithm NoisyMax is a differentially private way to solve this problem. It is shown in Figure 1.

Input: 𝑞 [1 : 𝑚]
Output: 𝑜𝑢𝑡

NoisyVector← []
for 𝑖 ← 1 to𝑚 do

NoisyVector[i]←
Lap( 𝜖

2
, 𝑞[𝑖])

end
out←
argmax(NoisyVector)

Fig. 1. Algorithm NoisyMax

Based on the privacy budget 𝜖 , it independently adds noise dis-

tributed according to Lap( 𝜖
2
, 0) and then outputs the index with

the maximum value after adding the noise.

Let us denote the deterministic function that outputs the

index of the maximum value in the sequence (𝑞1, . . . , 𝑞𝑚) by
det(NoisyMax). On a given input sequence of length𝑚, suppose

𝑖 is the index output by NoisyMax and 𝑗 is the index output by

det(NoisyMax). Theorem 6 of Barthe et al. [2016b] proves that, for

any 𝛽 ∈ (0, 1], 𝑃𝑟 (𝑞 𝑗 − 𝑞𝑖 < 4

𝜖
ln

𝑚
𝛽
) ≥ 1 − 𝛽.

There are two different ways we can formulate NoisyMax in our

framework. In both approaches U = R𝑚 . In the first approach,

the distance function 𝑑 onU is the same as the one given for the

Laplace mechanism, i.e., for any 𝑢,𝑢 ′ ∈ U, 𝑑 (𝑢,𝑢 ′) = 0 if 𝑢 = 𝑢 ′

and 𝑑 (𝑢,𝑢 ′) = 1 otherwise. The setV = {𝑖 : 1 ≤ 𝑖 ≤ 𝑚}. For any
𝑢 = (𝑞1, ..., 𝑞𝑚) ∈ U, the distance function 𝑑 ′𝑢 onV is defined by

𝑑 ′𝑢 (𝑖, 𝑗) = |𝑞𝑖 −𝑞 𝑗 |. Now, it is easy to see that the above mentioned result of Barthe et al. [2016b], is

equivalent to the statement that NoisyMax is (0, 𝛽, 𝛾)-accurate where 𝛽 =𝑚𝑒−
𝛾𝜖

4 .

In the second approach, we use the distance functions 𝑑 on U and 𝑑 ′𝑢 on V (for 𝑢 ∈ U)

defined as follows: for 𝑢,𝑢 ′ ∈ U, 𝑑 (𝑢,𝑢 ′) = | |𝑢 − 𝑢 ′ | |∞, and for 𝑢 ∈ U, 𝑖, 𝑗 ∈ V , if 𝑞𝑖 = 𝑞 𝑗 then

𝑑 ′𝑢 (𝑖, 𝑗) = 0, otherwise 𝑑 ′𝑢 (𝑖, 𝑗) = 1. We have the following lemma for the accuracy of NoisyMax
(See Appendix A).

Lemma 3. NoisyMax is (𝛼, 𝛽, 0)-accurate for 𝛽 =𝑚𝑒−
𝛼𝜖
2 and for all 𝛼 ≥ 0.

3.4 AboveThreshold
Given a sequence of queries (𝑞1, . . . , 𝑞𝑚) (𝑞𝑖 ∈ R) and parameter 𝑇 ∈ R, consider the problem of

determining the first query in the sequence which is above the threshold 𝑇 . The goal is not to output
the index of the query, but instead to output a sequence of ⊥ as long as the queries are below 𝑇 ,

and to terminate when either all queries have been read, or when the first query ≥ 𝑇 is read; if

such a query is found, the algorithm outputs ⊤ and stops.

AboveThreshold is a differentially private algorithm that solves the above problem. The algorithm

is a special case of Sparse shown in Figure 2a when 𝑐 = 1. AboveThreshold works by adding noise

to 𝑇 and to each query, and comparing if the noised queries are below the noised threshold. The

noise added is sampled from the Laplace distribution with scale parameter
2

𝜖
(for the threshold)

and
4

𝜖
(for queries). The set of inputs for AboveThreshold is U = R𝑚 and the outputs are V =

{⊥𝑚} ∪ {⊥𝑘⊤ | 𝑘 < 𝑚}. The accuracy claims for AboveThreshold in Dwork and Roth [2014] are

given in terms of a notion of (𝛼, 𝛽)-correctness. Let A be a randomized algorithm with inputs in

U and outputs inV , and let 𝛼 ∈ R≥0
and 𝛽 ∈ [0, 1]. We say that A is (𝛼, 𝛽)-correct if for every

𝑘, 1 ≤ 𝑘 ≤ 𝑚, and for every input 𝑢 = (𝑞1, ..., 𝑞𝑚) ∈ U such that 𝑞𝑘 ≥ 𝑇 + 𝛼 and 𝑞𝑖 < 𝑇 − 𝛼 for

1 ≤ 𝑖 < 𝑘 , A outputs ⊥𝑘−1⊤ with probability ≥ 1 − 𝛽. Using the results in Dwork and Roth [2014],

one can prove the following lemma.
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Lemma 4 (Dwork and Roth [2014]). AboveThreshold is (𝛼, 𝛽)-correct for 𝛽 = 2𝑚𝑒−
𝛼𝜖
8 and for all

𝛼 ≥ 0.

We formulateAboveThreshold in our framework and relate (𝛼, 𝛽)-correctness to (𝛼, 𝛽, 0)-accuracy
as follows. Let the distance function 𝑑 onU be given by 𝑑 (𝑢,𝑢 ′) = | | (𝑢 − 𝑢 ′) | |∞ . The distance

function 𝑑 ′𝑢 on V is given by 𝑑 ′𝑢 (𝑣, 𝑣 ′) = 0 if 𝑣 = 𝑣 ′, otherwise 𝑑 ′𝑢 (𝑣, 𝑣 ′) = 1. Now, we have the

following lemma.

Lemma 5. For any randomized algorithm A as specified above, for any 𝛼, 𝛽 such that 𝛼 ≥ 0 and
𝛽 ∈ [0, 1], A is (𝛼, 𝛽)-correct iff A is (𝛼, 𝛽, 0)-accurate.
Proof. Let 𝛼, 𝛽 be as given in the statement of the lemma. Now, assume A is (𝛼, 𝛽)-correct.

We show that it is (𝛼, 𝛽, 0)-accurate. Let 𝑣 = ⊥𝑘−1⊤ such that 1 ≤ 𝑘 ≤ 𝑚. Now consider any

𝑢 = (𝑢1, ..., 𝑢𝑚) ∈ det(A)−1 (𝑣) such that 𝑑 (𝑢,U − (det(A))−1 (𝑣))) > 𝛼. Now, if 𝑘 > 1 then fix any

𝑖, 𝑖 < 𝑘 and consider 𝑤 = (𝑤1, ...,𝑤𝑚) ∈ U such that 𝑤𝑖 = 𝑇 and 𝑤 𝑗 = 𝑢 𝑗 for all 𝑗 ≤ 𝑚 and 𝑗 ≠ 𝑖 .

Clearly det(A)(𝑤) ≠ 𝑣 and hence 𝑤 ∈ U − (det(A))−1 (𝑣). Since 𝑑 (𝑢,𝑤) > 𝛼 , it is the case that

𝑢𝑖 < 𝑇 − 𝛼. Now, let 𝛿 ∈ R such that 𝛿 > 0. Consider 𝑤 = (𝑤1, ...,𝑤𝑚) ∈ U such that 𝑤𝑘 = 𝑇 − 𝛿
and 𝑤𝑖 = 𝑢𝑖 for 𝑖 ≠ 𝑘, 1 ≤ 𝑖 ≤ 𝑚. Clearly, 𝑤 ∈ U − (det(A))−1 (𝑣)), and hence 𝑑 (𝑢,𝑤) > 𝛼 . Now,

we have 𝑢𝑘 −𝑤𝑘 > 𝛼 and hence 𝑢𝑘 > 𝑇 −𝛿 +𝛼. Since the last inequality holds for any 𝛿 > 0, we see

that 𝑢𝑘 ≥ 𝑇 + 𝛼. Thus, we see that 𝑢𝑖 < 𝑇 − 𝛼 for 𝑖 < 𝑘 and 𝑢𝑘 ≥ 𝑇 + 𝛼. Since, A is (𝛼, 𝛽)-correct,
we see that it outputs 𝑣 with probability ≥ 1 − 𝛽. Hence A is (𝛼, 𝛽, 0)-accurate.

Now, assume that A is (𝛼, 𝛽, 0)-accurate. We show that it is (𝛼, 𝛽)-correct. Consider any 𝑢 =

(𝑢1, ..., 𝑢𝑚) ∈ U such that, for some 𝑘 ≤ 𝑚, 𝑢𝑘 ≥ 𝑇 + 𝛼 and for all 𝑖 < 𝑘 , 𝑢𝑖 < 𝑇 − 𝛼. As before let
𝑣 = ⊥𝑘−1⊤. Clearly det(A)(𝑢) = 𝑣 . Now consider any𝑤 ∈ U − (det(A))−1 (𝑣), i.e., A(𝑤) ≠ 𝑣 . It

has to be the case that, either for some 𝑖 < 𝑘 , 𝑤𝑖 ≥ 𝑇 , or 𝑤𝑘 < 𝑇 . In the former case 𝑤𝑖 − 𝑢𝑖 > 𝛼

and in the later case, 𝑢𝑘 −𝑤𝑘 > 𝛼. Thus, 𝑑 (𝑢,𝑤) > 𝛼 for every𝑤 ∈ U such that det(A)(𝑤) ≠ 𝑣 .

Hence 𝑑 (𝑢,U − (det(A))−1 (𝑣)) > 𝛼. Since A is (𝛼, 𝛽, 0)-accurate, it outputs 𝑣 with probability

≥ 1 − 𝛽. Hence A is (𝛼, 𝛽)-correct. □

Using Lemma 5 and Lemma 4, we can conclude that AboveThreshold is (𝛼, 𝛽, 0)-accurate for
𝛽 = 2𝑚𝑒−

𝛼𝜖
8 and for all 𝛼 ≥ 0.

3.5 Sparse
The Sparse algorithm is a generalization of AboveThreshold. As in AboveThreshold, we get a

sequence of queries (𝑞1, . . . , 𝑞𝑚) and a threshold 𝑇 , and we output ⊥ whenever the query is below

𝑇 , and ⊤ when it is above 𝑇 . In AboveThreshold the algorithm stops when either the first ⊤ is

output or the entire sequence of queries is processed without outputting ⊤. Now, we want to

terminate when either 𝑐 ⊤s are output, or the entire sequence of queries is processed without 𝑐 ⊤s
being output. We will call this the deterministic function det(Sparse), and Sparse is the randomized

version of it that preserves privacy. The algorithm Sparse is shown in Figure 2a. The set of inputs

U, outputsV , distance metrics 𝑑 and 𝑑 ′𝑢 are the same as for AboveThreshold (Section 3.4).

Suppose the input sequence of queries (𝑞1, ..., 𝑞𝑚) satisfies the following property: for all 𝑗 ,

1 ≤ 𝑗 ≤ 𝑚, either 𝑞 𝑗 < 𝑇 − 𝛼 or 𝑞 𝑗 ≥ 𝑇 + 𝛼 , and furthermore, for at most 𝑐 values of 𝑗 , 𝑞 𝑗 ≥ 𝑇 + 𝛼.
A sequence 𝑣 = (𝑣1, ..., 𝑣𝑘 ) ∈ {⊥,⊤}∗ is a valid output sequence for the above input sequence of

queries if 𝑘 ≤ 𝑚 and the following conditions hold: (i) ∀𝑗 ≤ 𝑘 , 𝑣 𝑗 = ⊥ if 𝑞 𝑗 (𝐷) < 𝑇 − 𝛼 , otherwise
𝑣 𝑗 = ⊤; (ii) if 𝑘 < 𝑚 then 𝑣𝑘 = ⊤ and there are 𝑐 occurrences of ⊤ in 𝑣 ; (iii) if 𝑘 =𝑚 and 𝑣𝑘 = ⊥ then

there are fewer than 𝑐 occurrences of ⊤ in 𝑣 . The following accuracy claim for Sparse can be easily

shown by using Theorem 3.26 of Dwork and Roth [2014]. Let 𝛼, 𝛽 ∈ R be such that 𝛼 ≥ 0, 𝛽 ∈ [0, 1]
and 𝛼 = 8𝑐

𝜖
(ln𝑚 + ln( 2𝑐

𝛽
)) . On an input sequence of queries satisfying the above specified property,

with probability ≥ (1 − 𝛽), Sparse terminates after outputting a valid output sequence. Now, for
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(a) Sparse

Input: 𝑞 [1 : 𝑚]
Output: 𝑜𝑢𝑡 [1 : 𝑚]
r𝑇 ← Lap( 𝜖

2𝑐
,𝑇 )

𝑐𝑜𝑢𝑛𝑡 ← 0

for 𝑖 ← 1 to𝑚 do
r← Lap( 𝜖

4𝑐
, 𝑞[𝑖])

b← r ≥ r𝑇
if 𝑏 then

𝑜𝑢𝑡 [𝑖] ← ⊤,
r𝑻 ← Lap( 𝝐2𝒄 , 𝑻 )

𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then
exit

end
else

𝑜𝑢𝑡 [𝑖] ← ⊥
end

end

(b) NumericSparse

Input: 𝑞 [1 : 𝑚]
Output: 𝑜𝑢𝑡 [1 : 𝑚]
r𝑇 ← Lap( 4𝜖

9𝑐
,𝑇 )

𝑐𝑜𝑢𝑛𝑡 ← 0

for 𝑖 ← 1 to𝑚 do
r← Lap( 2𝜖

9𝑐
, 𝑞[𝑖])

b← r ≥ r𝑇
if 𝑏 then

𝑜𝑢𝑡 [𝑖] ← Lap( 𝜖
9𝑐
, 𝑞[𝑖]),

r𝑇 ← Lap( 4𝜖
9𝑐
,𝑇 )

𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1

if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐 then
exit

end
else

𝑜𝑢𝑡 [𝑖] ← ⊥
end

end

Fig. 2. Algorithms Sparse and NumericSparse. SparseVariant (discussed in Section 7.1) is a variant of Sparse
where r𝑇 is not re-sampled in the for-loop (shown in bold here).

𝛼, 𝛽 as given above, using the same reasoning as in the case of the algorithm AboveThreshold, it is
easily shown that Sparse is (𝛼, 𝛽, 0)-accurate for 𝛽 = 2𝑚𝑐𝑒−

𝛼𝜖
8𝑐 and for all 𝛼 ≥ 0.

3.6 NumericSparse
Consider a problem very similar to the one that Sparse tries to solve, where we again have a

sequence of queries (𝑞1, . . . , 𝑞𝑚) and threshold 𝑇 , but now instead of outputting ⊤ when 𝑞𝑖 ≥ 𝑇 ,
we want to output 𝑞𝑖 itself. NumericSparse solves this problem while maintaining differential

privacy. It is very similar to Sparse and is shown in Figure 2b. The only difference between Sparse
and NumericSparse is that instead of outputting ⊤, NumericSparse outputs a 𝑞𝑖 with added noise.

We now show how accuracy claims about NumericSparse are not only captured by our general

definition, but in fact can be improved.

As before, let U = R𝑚 . The distance function 𝑑 on U is defined as follows. For 𝑢,𝑢 ′ ∈ U,

where 𝑢 = (𝑢1, ..., 𝑢𝑚) and 𝑢 ′ = (𝑢 ′1, ..., 𝑢 ′𝑚), if for all 𝑖 such that both 𝑢𝑖 , 𝑢
′
𝑖 ≥ 𝑇 , it is the case that

𝑢𝑖 = 𝑢 ′𝑖 , then 𝑑 (𝑢,𝑢 ′) = | | (𝑢 − 𝑢 ′) | |∞, otherwise 𝑑 (𝑢,𝑢 ′) = ∞. We define V = ({⊥} ∪ R)𝑚 . The

distance function 𝑑 ′𝑢 (for any 𝑢) on V is defined as follows: for 𝑣, 𝑣 ′ ∈ V , where 𝑣 = (𝑣1, ..., 𝑣𝑚)
and 𝑣 ′ = (𝑣 ′

1
, ..., 𝑣 ′𝑚), if for all 𝑗, 1 ≤ 𝑗 ≤ 𝑚, either 𝑣 𝑗 = 𝑣 ′𝑗 = ⊥ or 𝑣 𝑗 , 𝑣

′
𝑗 ∈ R then 𝑑 ′𝑢 (𝑣, 𝑣 ′) =

max{|𝑣 𝑗 − 𝑣 ′𝑗 | |𝑣 𝑗 , 𝑣 ′𝑗 ∈ R}, otherwise 𝑑 ′𝑢 (𝑣, 𝑣 ′) = ∞. Let det(NumericSparse) be the function given

by the deterministic algorithm described earlier.

The accuracy for NumericSparse is given by Theorem 3.28 of Dwork and Roth [2014], which

can be used to show that it is (𝛼, 𝛽, 𝛼)-accurate with 𝛽 = 4𝑚𝑐𝑒−
𝛼𝜖
9𝑐 . The following theorem gives a

better accuracy result in which 𝛽 is specified as a function of both 𝛼 and 𝛾 . (See Appendix A for a

proof.) In the special case, when 𝛾 = 𝛼 , we get a value of 𝛽 (given in Corollary 7) that is smaller

than the above value.
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Theorem 6. NumericSparse is (𝛼, 𝛽,𝛾)-accurate where

𝛽 = 2𝑚𝑐𝑒−
𝛼𝜖
9𝑐 + 𝑐𝑒−

𝛾𝜖

9𝑐

Corollary 7. For any 𝛼 > 0, NumericSparse is (𝛼, 𝛽, 𝛼)-accurate where 𝛽 = (2𝑚 + 1)𝑐𝑒−𝛼𝜖
9𝑐

3.7 SmallDB
The algorithm SmallDB is given in Dwork and Roth [2014]. Using the notation of Dwork and Roth

[2014], we let X denote a finite set of database records. We let 𝑛 = |X| and X = {X𝑖 | 1 ≤ 𝑖 ≤ 𝑛}.
A database 𝑥 = (𝑥1, ..., 𝑥𝑛) is a 𝑛-vector of natural numbers, where 𝑥𝑖 denotes the number of

occurrences of X𝑖 in the database. Thus, N𝑛 is the set of possible databases. The size of the database

𝑥 is simply | |𝑥 | |
1
. A query 𝑓 is a function 𝑓 : X → [0, 1] . The query 𝑓 is extended to the set of

databases, by defining 𝑓 (𝑥) =
∑

1≤𝑖≤𝑛 𝑥𝑖 𝑓 (X𝑖 ).
The algorithm SmallDB takes as input a database 𝑥 , a finite set of queries Q and two real

parameters 𝜖, 𝑎 > 0 and outputs a small database from a set R, which is the set of small databases of

size
log |Q |
𝛼2

. Our parameter 𝑎 is the parameter 𝛼 of Dwork and Roth [2014]. The algorithm employs

the exponential mechanism using the utility function 𝑢 : N𝑛 × V → R, defined by 𝑢 (𝑥, 𝑣) =

−max{|𝑓 (𝑥) − 𝑓 (𝑣) | |𝑓 ∈ Q}. As in the Exponential mechanism, we takeU = N𝑛 and the distance

𝑑 to be as in the Laplacemechanism. The distance 𝑑 ′𝑥 is as given in the Exponentialmechanism. The

function det(SmallDB), is defined exactly as det(𝑃Exp
𝜖 ), i.e., det(SmallDB) (𝑥) = arg max𝑣 𝑢 (𝑥, 𝑣).

For any 𝑥 ∈ U, let 𝑣𝑥 = det(SmallDB) (𝑥). Using Proposition 4.4 of Dwork and Roth [2014] and its

proof, it can easily be shown that SmallDB is (0, 𝛽, 𝛾)-accurate where

𝛾 = 𝑎 − |𝑢 (𝑥, 𝑣𝑥 ) | +
2

𝜖 | | 𝑥 | |
1

(
log( |𝑋 |) log( |𝑄 |)

𝑎2
+ log

(
1

𝛽

))

4 THE ACCURACY PROBLEM AND ITS UNDECIDABILITY
Armed with a definition of what it means for a differential privacy algorithm to be accurate, we are

ready to define the computational problem(s) associated with checking accuracy claims. Let us fix

a differential privacy algorithm 𝑃𝜖 and the deterministic algorithm det(𝑃𝜖 ) against which it will be

measured. Let us also fix the set of inputsU and outputsV for 𝑃𝜖 . Informally, we would like to

check if 𝑃𝜖 is (𝛼, 𝛽,𝛾)-accurate. Typically, 𝛼, 𝛽,𝛾 depend on both 𝜖 and the input𝑢. Furthermore, the

program 𝑃𝜖 may only be well defined for 𝜖 belonging to some interval 𝐼 . Therefore, we introduce

some additional parameters to define the problem of checking accuracy.

Let 𝐼 ⊆ R≥0
be an interval with rational end-points. Let Σ = R≥0 × [0, 1] × R≥0

. Consider

𝜂 : 𝐼 × U → 𝔓(Σ), where 𝔓(Σ) denotes the powerset of Σ. Here 𝜂 (𝜖,𝑢) is the set of all valid

(𝛼, 𝛽,𝛾) triples for privacy budget 𝜖 and input 𝑢. 𝜂 shall henceforth be referred to as the admissible
region.

Further, let 𝑑 : U ×U → R∞ be a distance function onU . Let 𝑑 ′ : U ×V ×V → R∞ be such

that for each𝑢 ∈ U, the function 𝑑 ′𝑢 : V×V → R∞ defined as 𝑑 ′𝑢 (𝑣1, 𝑣2) = 𝑑 ′(𝑢, 𝑣1, 𝑣2) is a distance
function onV . We will call 𝑑 the input distance function and 𝑑 ′ the output distance function. The
following two problems will be of interest.

Accuracy-at-an-input: Given input 𝑢, determine if 𝑃𝜖 is (𝛼, 𝛽,𝛾)-accurate for all 𝜖 ∈ 𝐼 and

(𝛼, 𝛽,𝛾) ∈ 𝜂 (𝜖,𝑢).
Accuracy-at-all-inputs: For all inputs 𝑢, determine if 𝑃𝜖 is (𝛼, 𝛽,𝛾)-accurate for all 𝜖 ∈ 𝐼 and

(𝛼, 𝛽,𝛾) ∈ 𝜂 (𝜖,𝑢).
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Counterexamples. A counterexample for the accuracy-at-an-input decision problem, with pro-

gram 𝑃𝜖 and 𝑢 ∈ U, is a quadruple (𝜖0, 𝛼, 𝛽,𝛾) such that (𝛼, 𝛽,𝛾) ∈ 𝜂 (𝜖0, 𝑢) and the program

𝑃𝜖0
is not (𝛼, 𝛽,𝛾)-accurate at input 𝑢, where 𝜂 is the function specifying valid sets of parame-

ters as described above. Along the same lines, a counterexample for the accuracy-at-all-inputs

decision problem is a quintuple (𝑢, 𝜖0, 𝛼, 𝛽,𝛾) such that (𝜖0, 𝛼, 𝛽,𝛾) is a counterexample for the

accuracy-at-an-input decision problem at input 𝑢 for 𝑃𝜖 .

The following theorem shows that the two problems above are undecidable for general random-

ized programs 𝑃𝜖 (See Appendix B for the proof).

Theorem 8. Both the problems Accuracy-at-an-input and Accuracy-at-all-inputs are undecidable for
the general class of randomized programs.

Remark. For simplicity of presentation, we will assume that the interval 𝐼 is always the set of

strictly positive integers.

5 A DECIDABLE CLASS OF PROGRAMS
In this section we will identify a class of programs, called DiPWhile+, for which we will prove

decidability results in Section 6. DiPWhile+ programs are probabilistic while programs that are

an extension of the language DiPWhile introduced by Barthe et al. [2020a], for which checking

differential privacy was shown to be decidable. Our decidability results rely crucially on the

observation that the semantics of DiPWhile+ programs can be defined using finite state parametric

DTMCs, whose transition probabilities are definable in first order logic over reals. Therefore,

we begin by identifying fragments of first order logic over reals that are relevant for this paper

(Section 5.1) before presenting the syntax (Section 5.2) followed by the DTMC semantics (Section 5.3)

for DiPWhile+ programs.

5.1 Theory of Reals
Our approach to deciding accuracy relies on reducing the problem to that of checking if a first order

sentence holds on the reals. The use of distributions like Laplace and Exponential in algorithms,

ensure that the sentences constructed by our reduction involve exponentials. Therefore, we need

to consider the full first order theory of reals with exponentials and its sub-fragments.

Recall thatℜ+ = ⟨R, 0, 1, +, <⟩ is the first order structure of reals, with constants 0, 1, addition, and

the usual ordering < on reals. The set of first order sentences that hold in this structure, denoted Th+,
is sometimes called the first order theory of linear arithmetic. The structure ℜ+,× = ⟨R, 0, 1, +,×, <⟩
also has multiplication, and we will denote its first order theory, the theory of real closed fields, as

Th+,×. The celebrated result due to Tarski [1951] is that Th+ and Th+,× admit quantifier elimination

and are decidable.

Definition 5. A partial function 𝑓 : R𝑛 ↩→ R𝑘 is said to be definable in Th+/Th+,× respectively, if
there are formulas𝜓𝑓 (𝑥) and 𝜑 𝑓 (𝑥,𝑦) over the signature of ℜ+/ ℜ+,× respectively with 𝑛 and 𝑛 + 𝑘
free variables respectively (𝑥 and 𝑦 are vectors of 𝑛 and 𝑘 variables respectively) such that

(1) for all 𝑎 ∈ R𝑛, 𝑎 ∈ dom(𝑓 ) iff ℜ |= 𝜓𝑓 [𝑥 ↦→ 𝑎], and
(2) for all 𝑎 ∈ R𝑛 such that 𝑎 ∈ dom(𝑓 ), 𝑓 (𝑎) = ¯𝑏 iff ℜ |= 𝜑 𝑓 [𝑥 ↦→ 𝑎,𝑦 ↦→ ¯𝑏]

where ℜ is ℜ+/ℜ+,× respectively.

Finally, the real exponential field ℜexp = ⟨R, 0, 1, 𝑒 ( ·) , +,×⟩ is the structure that additionally

has the unary exponential function 𝑒 ( ·) which maps 𝑥 ↦→ 𝑒𝑥 . A long-standing open problem in

mathematics is whether its first-order theory (denoted here by Thfullexp) is decidable. However, it

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Deciding Accuracy 1:13

was shown by MacIntyre and Wilkie [1996] that Thfullexp is decidable provided Schanuel’s conjecture

(see Lang [1966]) holds for the set of reals
3
.

Some fragments of Thfullexp with the exponential function are known to be decidable. In particular,

there is a fragment identified by McCallum and Weispfenning [2012] that we exploit in our results.

Let the language Lexp be the first-order formulas over a restricted vocabulary and syntax defined

as follows. Formulas in Lexp are over the signature of ℜexp, built using variables {𝜖} ∪ {𝑥𝑖 | 𝑖 ∈ N}.
In Lexp, the unary function 𝑒 ( ·) shall only be applied to the variable 𝜖 and rational multiples of 𝜖 .

Thus, terms in Lexp are polynomials with rational coefficients over the variables {𝜖} ∪ {𝑥𝑖 | 𝑖 ∈
N} ∪ {𝑒𝜖 } ∪ {𝑒𝑞𝜖 | 𝑞 ∈ Q}. Atomic formulas in the language are of the form 𝑡 = 0, 𝑡 < 0, or 0 < 𝑡 ,

where 𝑡 is a term. Quantifier free formulas are Boolean combinations of atomic formulas. Sentences

in Lexp are formulas of the form

𝑄𝜖𝑄1𝑥1 · · ·𝑄𝑛𝑥𝑛𝜓 (𝜖, 𝑥1, . . . , 𝑥𝑛)
where 𝜓 is a quantifier free formula, and 𝑄 , 𝑄𝑖s are quantifiers

4
. In other words, sentences are

formulas in prenex form, where all variables are quantified, and the outermost quantifier is for the

special variable 𝜖 . The theory Thexp is the collection of all sentences in Lexp that are valid in the

structure ℜexp. The crucial property for this theory is that it is decidable.

Theorem 9 (McCallum and Weispfenning [2012]). Thexp is decidable.

Wewill denote the set of formulas of the form𝑄 𝑗𝑥 𝑗 · · ·𝑄𝑛𝑥𝑛𝜓 (𝜖, 𝑥1, . . . , 𝑥𝑛) byLexp (𝜖, 𝑥1 . . . , 𝑥 𝑗−1).
Finally, our tractable restrictions (and our proofs of decidability) shall often utilize the notion of

partial functions being parametrically definable in Thexp; we therefore conclude this section with

the formal definition.

Definition 6. A partial function 𝑓 : R𝑛 × (0,∞) ↩→ R𝑘 is said to be parametrically definable in
Thexp, if there are formulas𝜓𝑓 (𝑥, 𝜖) and 𝜑 𝑓 (𝑥, 𝜖,𝑦) over the signature ofℜexp with 𝑛+1 and 𝑛+𝑘 +1

free variables respectively (𝑥 and 𝑦 are vectors of 𝑛 and 𝑘 variables respectively, and 𝜖 is a variable)

such that

(1) for every 𝑎 ∈ Q𝑛 , the formulas𝜓𝑓 [𝑥 ↦→ 𝑎] and 𝜑 𝑓 [𝑥 ↦→ 𝑎] are in Lexp (𝜖,𝑦),
(2) for all 𝑎 ∈ R𝑛, 𝑏 ∈ (0,∞) . (𝑎, 𝑏) ∈ dom(𝑓 ) iff ℜexp |= 𝜓𝑓 [𝑥 ↦→ 𝑎, 𝜖 ↦→ 𝑏], and
(3) for all 𝑎 ∈ R𝑛, 𝑏 ∈ (0,∞) such that (𝑎, 𝑏) ∈ dom(𝑓 ), 𝑓 (𝑎, 𝑏) = 𝑐 iff ℜexp |= 𝜑 𝑓 [𝑥 ↦→ 𝑎, 𝜖 ↦→

𝑏,𝑦 ↦→ 𝑐] .
When 𝑛 = 0, we simply say that 𝑓 is definable in Thexp.

Example 2. Consider the NumericSparse algorithm from Section 3.6. Assume that the algorithm

is run on an array of size 2 with threshold 𝑇 set to 0. Assume that the array elements take the

value 𝑥1 and 𝑥2 with 𝑥1 < 0 < 𝑥2. Given 𝑥𝛾 ≥ 0, let 𝑝 (𝑥1, 𝑥2, 𝑥𝛾 , 𝜖) denote the probability of

obtaining the output (⊥, 𝑧) such that |𝑥2 − 𝑧 | < 𝑥𝛾 . Note that 𝑝 can be viewed as a partial function

𝑝 : 𝑅3× (0,∞) ↩→ 𝑅 with domain {(𝑥1, 𝑥2, 𝑥𝛾 , 𝜖) |𝑥1 < 0 < 𝑥2, 𝑥𝛾 > 0, 𝜖 > 0}. Further, 𝑝 (𝑥1, 𝑥2, 𝑥𝛾 , 𝜖)
is the product 𝑝1𝑝2 where

𝑝1 = 1 − 2

3

(𝑒 2

9
𝑥1𝜖 + 𝑒− 2

9
𝑥2𝜖 ) + 1

6

(𝑒 4

9
𝑥1𝜖 + 𝑒− 4

9
𝑥2𝜖 ) − 1

48

(𝑒 1

9
(6𝑥1−2𝑥2)𝜖 + 𝑒− 1

9
(6𝑥2−2𝑥1)𝜖 ) + 1

4

𝑒
2

9
(𝑥1−𝑥2)𝜖

and 𝑝2 = 1 − 𝑒− 1

9
𝑥𝛾𝜖

.

3
Schanuel’s conjecture for reals states that if the real numbers 𝑟1, . . . , 𝑟𝑛 are linearly independent over Q (the rationals)

then the transcendence degree of the field extension Q(𝑟1, . . . , 𝑟𝑛, 𝑒
𝑟1 , . . . , 𝑒𝑟𝑛 ) is ≥ 𝑛 (over Q).

4
Strictly speaking, McCallum and Weispfenning [2012] allow 𝑒 (·) to be applied only to 𝜖. However, any sentence in Lexp

with terms of the form 𝑒𝑞𝜖 with 𝑞 ∈ Q can be easily shown to be equivalent to a formula where 𝑒 (·) is applied only to 𝜖.

See Barthe et al. [2020b] for examples.
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Expressions (b ∈ B, x ∈ X, z ∈ Z, r ∈ R, 𝑑 ∈ DOM, 𝑖 ∈ Z, 𝑞 ∈ Q, 𝑔 ∈ F𝐵𝑜𝑜𝑙 , 𝑓 ∈ FDOM):
𝐵 ::= true | false | b | 𝑛𝑜𝑡 (𝐵) | 𝐵 𝑎𝑛𝑑 𝐵 | 𝐵 𝑜𝑟 𝐵 | 𝑔(𝐸)
𝐸 ::= 𝑑 | x | 𝑓 (𝐸)
𝑍 ::= z | 𝑖𝑍 | 𝐸𝑍 | 𝑍 + 𝑍 | 𝑍 + 𝑖 | 𝑍 + 𝐸
𝑅 ::= r | 𝑞𝑅 | 𝐸𝑅 | 𝑅 + 𝑅 | 𝑅 + 𝑞 | 𝑅 + 𝐸

Basic Program Statements (𝑎 ∈ Q>0
, ∼∈ {<, >,=, ≤, ≥}, 𝐹 is a scoring function and choose is a

user-defined distribution):

𝑠 ::= b← 𝐵 | b← 𝑍 ∼ 𝑍 | b← 𝑍 ∼ 𝐸 | b← 𝑅 ∼ 𝑅 | b← 𝑅 ∼ 𝐸 |
x← 𝐸 | x← Exp(𝑎𝜖, 𝐹 (x̃), 𝐸) | x← choose(𝑎𝜖, 𝐸) |
z← 𝑍 | z← DLap(𝑎𝜖, 𝐸) |
r← 𝑅 | r← Lap(𝑎𝜖, 𝐸) | r← Lap(𝑎𝜖, r) |
if b then 𝑃 else 𝑃 end | while b do 𝑃 end | exit

Program Statements (ℓ ∈ Labels)
𝑃 ::= ℓ : 𝑠 | ℓ : 𝑠 ; 𝑃

Fig. 3. BNF grammar for DiPWhile+. DOM is a finite discrete domain. F𝐵𝑜𝑜𝑙 , (FDOM resp) are set of functions
that output Boolean values (DOM respectively). B,X,Z,R are the sets of Boolean variables, DOM variables,
integer random variables and real random variables. Labels is a set of program labels. For a syntactic class
𝑆 , 𝑆 denotes a sequence of elements from 𝑆 . In addition, DiPWhile+ programs have the restriction that
assignments to real and integer variables do not occur with the scope of a while statement.

𝑝 is definable in Thfullexp with𝜓𝑝 (𝑥1, 𝑥2, 𝑥𝛾 , 𝜖) as the formula (𝑥1 < 0)∧ (𝑥2 > 0)∧ (𝑥𝛾 > 0)∧ (𝜖 > 0)
and 𝜑𝑝 (𝑥1, 𝑥2, 𝑥𝛾 , 𝜖,𝑦) as the formula 𝑦 = 𝑝1𝑝2. Observe that for rational 𝑞1, 𝑞2, 𝑐 , the formulas

𝜓𝑝 (𝑞1, 𝑞2, 𝑐, 𝜖) and 𝜑𝑝 (𝑞1, 𝑞2, 𝑐, 𝜖,𝑦) are in Lexp (𝜖,𝑦). Hence 𝑝 is parametrically definable.

Observe that 𝑝 (𝑥1, 𝑥2, 𝑥𝛾 , 𝜖) is the probability of obtaining an output from NumericSparse that is
at most 𝑥𝛾 away from the output of the det(NumericSparse) for inputs of the form 𝑥1 < 0 < 𝑥2. This

probability is parametrically definable. Such an observation will be true for DiPWhile+ programs

and is a crucial ingredient in our decidability results.

5.2 DiPWhile+ Programs
Recently, Barthe et al. [2020a,b] identified a class of probabilistic while programs called DiPWhile,
for which the problem of checking if a program is differentially private is decidable. Moreover,

the language is powerful enough to be able to describe several differential privacy algorithms in

the literature that have finite inputs and outputs. In this paper, we extend the language slightly

and prove decidability and conditional decidability results for checking accuracy (Section 6). Our

extension allows for programs to have real-valued inputs and outputs (DiPWhile programs only

have finite-valued inputs) and for these input variables to serve as means of the Laplace mechanisms

used during sampling; DiPWhile programs could only use DOM expressions as means of Laplace

mechanisms. The resulting class of programs, that we call DiPWhile+, is described in this section.

The formal syntax of DiPWhile+ programs is shown in Figure 3. Program variables can have

one of four types: 𝐵𝑜𝑜𝑙 ({true, false}); DOM, a finite domain, which is assumed without loss of
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generality to be a finite subset of integers {−𝑁max, . . . 0, 1, . . . 𝑁max} 5; integers Z; and reals R. In
Figure 3, Boolean/DOM/integer/real program variables are denoted by B/X/Z/R, respectively, and
Boolean/DOM/integer/real expressions are given by non-terminals 𝐵/𝐸/𝑍/𝑅. Boolean expressions

(𝐵) can be built using Boolean variables and constants, standard Boolean operations, and by applying

functions from F𝐵𝑜𝑜𝑙 . F𝐵𝑜𝑜𝑙 is assumed to be a collection of computable functions returning a 𝐵𝑜𝑜𝑙 .

We assume that F𝐵𝑜𝑜𝑙 always contains a function EQ (𝑥1, 𝑥2) that returns true iff 𝑥1 and 𝑥2 are

equal. DOM expressions (𝐸) are similarly built from DOM variables, values in DOM, and applying

functions from the set of computable functions FDOM. Next, integer expressions (𝑍 ) are built using
multiplication and addition with integer constants and DOM expressions, and additions with other

integer expressions. Finally, real expressions (𝑅) are built using multiplication and addition with

rational constants and DOM expressions, and additions with other real-valued expressions. One

important restriction to note is that integer-valued expressions cannot be added or multiplied in

real-valued expressions.

A DiPWhile+ program is a triple consisting of a set of (private) input variables, a set of (public)

output variables, and a finite sequence of labeled statements (non-terminal 𝑃 in Figure 3). Private

input and public output variables can either be of type DOM or R; this is an important change

from DiPWhile where these variables were restricted to be of type DOM. Thus, the set of possible

inputs/outputs (U/V), is identified with the set of valuations for input/output variables. Note that

if we represent the set of relevant variables 𝑋 ′ as a sequence x1, x2, . . . , x𝑚 , then a valuation 𝑣𝑎𝑙

over 𝑋 ′ can be viewed as a sequence 𝑣𝑎𝑙 (x1), 𝑣𝑎𝑙 (x2), . . . , 𝑣𝑎𝑙 (x𝑚).
Program statements are assumed to be uniquely labeled from a set of labels Labels. However, we

will often omit these labels, unless they are needed to explain something. Basic program statements

(non-terminal 𝑠) can either be assignments, conditionals, while loops, or exit. Statements other

than assignments are self-explanatory. The syntax of assignments is designed to follow a strict

discipline. Real and integer variables can either be assigned the value of real/integer expressions or

samples drawn using the Laplace or discrete Laplace mechanism. An important distinction to note

between programs inDiPWhile+ andDiPWhile by Barthe et al. [2020a], is that when sampling using

Laplace, real variables in addition to DOM expressions can be used as the mean. DOM variables are

either assigned values of DOM expressions or sampled values. Sampled values for DOM variables

can either be drawn using an exponential mechanism (Exp(𝑎𝜖, 𝐹 (x̃), 𝐸)) with a rational-valued,

computable scoring function 𝐹 , or a user-defined distribution (choose(𝑎𝜖, 𝐸)), where the probability
of picking a value 𝑑 as function of 𝜖 according to choose is parametrically definable in Thexp as a
function of 𝜖 . Moreover, we assume that there is an algorithm that on input 𝑎, ˜𝑑 returns the formula

defining the probability of sampling 𝑑 ∈ DOM from the distribution choose(𝑎𝜖, ˜𝑑), where ˜𝑑 is a

sequence of values from DOM. For assignments to Boolean variables, it is worth directing attention

to the cases where a variable is assigned the result of comparing two expressions. Notice that the

syntax does not allow comparing real and integer expressions. This is an important restriction to

get decidability. For technical convenience, we assume that in any execution, variables appearing

on the right side of an assignment are assigned a value earlier in the execution.

In addition to the syntactic restrictions given by the BNF grammar in Figure 3, we require

that DiPWhile+ programs satisfy the following restriction; this restriction is also used in defining

DiPWhile by Barthe et al. [2020a].

Bounded Assignments Real and integer variables are not assigned within the scope of a while

loop. Therefore, real and integer variables are assigned only a bounded number of times in

any execution. Thus, without loss of generality, we assume that real and integer variables are

5
The distinction between Booleans and finite domain types is for convenience rather than technical neccessity. Moreover,

DOM can be any finite set, including a subset of rationals.
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assigned at most once, as a program with multiple assignments to a real/integer variable can

always be rewritten to an equivalent program where each assignment is to a fresh variable.

DiPWhile and DiPWhile+. DiPWhile, introduced by Barthe et al. [2020a], is a rich language that

can describe differential privacy mechanisms with finitely many input variables taking values over

a finite domain, and output results over a finite domain. Programs can sample from continuous and

discrete versions of Laplacian distributions, user-defined distributions over DOM and exponential

mechanism distributions with finite support. Any DiPWhile program can be rewritten as a program

in which variables are initially sampled from Laplacian distributions, comparisons between linear

combinations of sampled values and inputs are stored in Boolean variables, followed by steps of

a simple probabilistic program with Boolean and DOM variables. DiPWhile can express several

differential privacy mechanisms such as the algorithms AboveThreshold, NoisyMax, Sparse and
exponential mechanism discussed in Section 3. Other examples expressible in DiPWhile include
private vertex cover [Gupta et al. 2010] and randomized response. It can also, for example, express

versions of NoisyMax where the noise is sampled from an exponential distribution and not from

a Laplacian distribution. In DiPWhile+, we allow inputs to take real values. Further, we allow

programs to output real values formed by linear combinations of input and sampled real variables.

This allows us to express mechanisms such as the private smart sum algorithm [Chan et al. 2011]

and NumericSparse (See Section 3.6). In DiPWhile, we could only approximate these examples by

discretizing the output values and restricting the input variables to take values in DOM. DiPWhile+
does not allow using Gaussian mechanisms to sample, primarily because our decision procedures

do not extend to such algorithms.

Example 3. Algorithm 1 shows how NumericSparse can be encoded in our language with 𝑇 =

0, 𝛿 = 0, 𝑁 = 2, 𝑐 = 1; this is a specialized version of the pseudocode in Figure 2b. The algorithm

either outputs ⊥ or a numeric value. We don’t have variables of such a type in our language. We

therefore encode each output as a pair: DOM variable o1
and real variable o2

. If o1 = 0 then output

is ⊥ and if o1 = 1 then the output is o2
. Though for-loops are not part of our program syntax, they

can modeled as while loops, or if bounded (as they are here), they can be unrolled.

5.3 Semantics
A natural semantics for DiPWhile+ programs can be given using Markov kernels. Given a fixed

𝜖 > 0, the states in such a semantics for program 𝑃𝜖 will be of the form (ℓ, ℎ𝐵𝑜𝑜𝑙 , ℎDOM, ℎZ, ℎR),
where ℓ is the label of the statement of 𝑃𝜖 to be executed next, the functions ℎ𝐵𝑜𝑜𝑙 , ℎDOM, ℎZ, and

ℎR assign values to the Boolean, DOM, real, and integer variables of the program 𝑃𝜖 . There is a

natural 𝜎-algebra that can be defined on such states, and the semantics defines a Markov kernel

over this algebra. Such a semantics for DiPWhile+ would be similar to the one for DiPWhile given
by Barthe et al. [2020b], and is skipped here. Throughout the paper, we shall also assume that

DiPWhile+ programs terminate with probability 1 on all inputs.

Our decidability results rely crucially on the observation that the semantics of DiPWhile+ can

be defined using a finite-state (parametrized) DTMC. This semantics, though not natural, can be

shown to be equivalent to the Markov kernel semantics. The proof of equivalence is similar to the

one given by Barthe et al. [2020b]. We spend the rest of this section highlighting the main aspects

of the DTMC semantics that help us underscore the ideas behind our decision procedure. We begin

by recalling the definition of a finite-state parametrized DTMC.

Definition 7. A parametrized DTMC over (𝑛 + 1) parameters (𝑥, 𝜖) is a pair D = (𝑍,Δ), where
𝑍 is a finite set of states, and Δ : 𝑍 × 𝑍 → (R𝑛 × (0,∞) → [0, 1]) is the probabilistic transition
function. For any pair of states 𝑧, 𝑧 ′, Δ(𝑧, 𝑧 ′) will be called the probability of transitioning from 𝑧 to
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Input: 𝑞1, 𝑞2

Output: o1

1
, o2

1
, o1

2
, o2

2

1 𝑇 ← 0;

2 o1

1
← 0;

3 o1

2
← 0;

4 r𝑇 ← Lap( 4𝜖
9
,𝑇 );

5 r1 ← Lap( 2𝜖
9
, 𝑞1);

6 b← r1 ≥ r𝑇 ;
7 if b then

8 o1

1
← 1

9 o2

1
← Lap( 𝜖

9
, 𝑞1)

else

10 r2 ← Lap( 2𝜖
9
, 𝑞2);

11 b← r2 ≥ r𝑇 ;
12 if b then

13 o1

2
← 1

14 o2

2
← Lap( 𝜖

9
, 𝑞2)

end

end

15 exit

Algorithm 1: NumericSparse

with 𝑁 = 2, 𝑐 = 1, 𝛿 = 0, and𝑇 =

0. The numbers at the beginning

of a line indicate the label of the

statement.

.

.

.

10: 𝑞1 : 𝑢, 𝑞2 : 𝑣,𝑇 : 0

o1

1
: 0, o1

2
: 0, 𝑏 : ⊥

𝑟𝑇 : ( 4

9
, 0) 𝑟1 : ( 2

9
,𝑢)

𝑟1 < 𝑟𝑇

11: 𝑞1 : 𝑢, 𝑞2 : 𝑣,𝑇 : 0

o1

1
: 0, o1

2
: 0, 𝑏 : ⊥

𝑟𝑇 : ( 4

9
, 0) 𝑟1 : ( 2

9
,𝑢) 𝑟2 : ( 2

9
, 𝑣)

𝑟1 < 𝑟𝑇

12: 𝑞1 : 𝑢, 𝑞2 : 𝑣,𝑇 : 0

o1

1
: 0, o1

2
: 0, 𝑏 : ⊤

𝑟𝑇 : ( 4

9
, 0) 𝑟1 : ( 2

9
,𝑢) 𝑟2 : ( 1

4
, 𝑣)

𝑟1 < 𝑟𝑇 , 𝑟2 ≥ 𝑟𝑇

12: 𝑞1 : 𝑢, 𝑞2 : 𝑣,𝑇 : 0

o1

1
: 0, o1

2
: 0, 𝑏 : ⊥

𝑟𝑇 : ( 4

9
, 0) 𝑟1 : ( 2

9
,𝑢) 𝑟2 : ( 2

9
, 𝑣)

𝑟1 < 𝑟𝑇 , 𝑟2 < 𝑟𝑇

.

.

.
.
.
.

1

𝑝 𝑞

Fig. 4. Partial DTMC semantics of Algorithm 1 showing the steps when
lines 10 and 11 are executed.𝑞1 and𝑞2 are assumed to have values𝑢 and 𝑣,
respectively. Only values of assigned program variables are shown. Third
line in state shows parameters for the real values that were sampled. Last
line shows the accumulated set of Boolean conditions that hold on the
path.

𝑧 ′, and is a function that, given 𝑎 ∈ R𝑛 and 𝑏 ∈ (0,∞), returns a real number between 0 and 1, such

that for any state 𝑧,
∑

𝑧′∈𝑍 Δ(𝑎, 𝑏) (𝑧, 𝑧 ′) = 1.

The connection between programs in DiPWhile+ and parametrized DTMCs is captured by the

following result that is exploited in our decidability results.

Theorem 10. Let 𝑃𝜖 be an arbitrary DiPWhile+ program whose real-valued input variables are
𝑥 . There is a finite state parametrized DTMC [[𝑃𝜖 ]] over parameters (𝑥, 𝜖) (with transition function
Δ) that is equivalent to the Markov kernel semantics of 𝑃𝜖 . Further, the DTMC [[𝑃𝜖 ]] is effectively
constructible, and for any pair of states 𝑧, 𝑧 ′, the partial function Δ(𝑧, 𝑧 ′) is parametrically definable
in Thexp.

Proof Sketch. The formal construction of the parametrized DTMC [[𝑃𝜖 ]] is very similar the

one outlined in Barthe et al. [2020b] for (the restricted) DiPWhile programs. Here, we just sketch

the main ideas. It is useful to observe that defining a finite-state semantics for DiPWhile+ programs

is not obvious, since these programs have real and integer valued variables. The key to obtaining

such a finite state semantics is to not track the values of real and integer variables explicitly, but

rather implicitly through the relationships they have amongst each other.

Informally, a state in [[𝑃𝜖 ]] keeps track of a program statement to be executed (in terms of its

label), and the values stored in each of the Boolean and DOM variables. However, the values of

real and integer variables will not be explicitly stored in the state. Recall that real and integer

variables are assigned a value only once in a DiPWhile+ program. Therefore, states of [[𝑃𝜖 ]] store
the (symbolic) expression on the right side of an assignment for each real/integer variable, instead

of the actual value; when the value is sampled, the symbolic parameters of the distribution are

stored. In addition to symbolic values for real and integer variables, a state of [[𝑃𝜖 ]] also tracks the
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relative order among the values of real and integer variables. Thus, [[𝑃𝜖 ]] has only finitely many

states. A state of [[𝑃𝜖 ]] is an abstraction of all “concrete states” whose assignments to Boolean and

DOM variables match, and whose assignment to real and integer variables satisfy the constraints

imposed by the symbolic expressions and the relative order maintained in the [[𝑃𝜖 ]] state.
State updates in [[𝑃𝜖 ]] are as follows. Assignments to DOM variables are as expected — a new

value is calculated and stored in the state for a deterministic assignment, or a value is sampled

probabilistically and stored in the state for a randomized assignment. Assignments to real and

integers variables are always deterministic — the state is updated with the appropriate symbolic

values that appear in the deterministic or probabilistic assignment. It is important to note that

sampling a value using a Laplace mechanism is a deterministic step in the DTMC semantics.

Assignments to Boolean variables, where the right hand side is a Boolean expression, is as expected;

the right hand side expression is evaluated and the state is updated with the new value. Assignments

to Boolean variables by comparing two real or integer expressions is handled in a special way.

These are probabilistic transitions. Consider an assignment b← 𝑅1 ∼ 𝑅2 for example. The result

of executing this statement from state 𝑧 will move to a state where 𝑅1 ∼ 𝑅2 is added to the set

of ordering constraints, with probability equal to the probability that 𝑅1 ∼ 𝑅2 holds conditioned

on the ordering constraints in 𝑧 holding, subject to the variables being sampled according to the

parameters stored in 𝑧. With the remaining probability, [[𝑃𝜖 ]] will move to a state where ¬(𝑅1 ∼ 𝑅2)
is added to the ordering constraints. Finally, branching and while statements are deterministic steps

with the next state being determined by the value stored for the Boolean variable in the condition.

Notice here that since input variables and the privacy parameter 𝜖 can appear as parameters

of the Laplace/discrete Laplace mechanism used to sample a value of a real/integer variable, the

transition probabilities of [[𝑃𝜖 ]] depend on these parameters. That these transition probabilities

are parametrically definable in Thexp can be established along the same lines as the proof that the

transition probabilities are definable in Thexp for the DTMC semantics of DiPWhile. □

Example 4. The parametrized DTMC semantics of Algorithm 1 is partially shown in Figure 4.

We show only the transitions corresponding to executing lines 10 and 11 of the algorithm, when

𝑞1 = 𝑢 and 𝑞2 = 𝑣 initially; here 𝑢, 𝑣 ∈ {⊥,⊤}. The multiple lines in a given state give the different

components of the state. The first two lines give the assignment to 𝐵𝑜𝑜𝑙 and DOM variables, the

third line gives values to the integer/real variables, and the last line has the Boolean conditions

that hold along a path. Since 10 and 11 are in the else-branch, the condition 𝑟1 < 𝑟𝑇 holds. Notice

that values to real variables are not explicit values, but rather the parameters used when they were

sampled. Finally, observe that probabilistic branching takes place when line 11 is executed, where

the value of 𝑏 is taken to be the result of comparing 𝑟2 and 𝑟𝑇 . The numbers 𝑝 and 𝑞 correspond to

the probability that the conditions in a branch hold, given the parameters used to sample the real

variables and conditioned on the event that 𝑟1 < 𝑟𝑇 .

6 DECIDING ACCURACY FOR DIPWHILE+ PROGRAMS
We shall now show that the problem of checking the accuracy of a DiPWhile+ program is decidable,

assuming Schanuel’s conjecture. Further, we shall identify special instances under which the

problem of checking the accuracy of aDiPWhile+ program is decidable without assuming Schanuel’s

conjecture. Our results are summarized in Table 1.

Remark. For the rest of the section, we shall say that inputs/outputs to the DiPWhile+ program 𝑃𝜖
are rational if all the real variables in the input/output respectively take rational values. We shall

also say that 𝑃𝜖 has finite inputs if all of its input variables are DOM-variables, and that 𝑃𝜖 has

finite outputs if all of its output variables are DOM-variables.
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Result Problem Schanuel

Infinite

Inputs

Infinite

Outputs det(𝑃𝜖 ) 𝑑 𝑑′ Region 𝜂

Thm 12 all-inputs ✓ ✓ ✓ Th+,× Th+,× Th+ param. def. in Thexp
Cor 17 all-inputs - ✗ ✗ Th+ Th+ Th+ (𝛼,𝛾 )-monotonic

Cor 13 an-input ✓ - ✓ Th+,× Th+,× Th+ param. def. in Thexp

Thm 14 an-input - - ✓ Th+ Th+,× Th+
simple, fixed 𝛼 ,

fixed 𝛾

Thm 15 an-input - - ✓ Th+ Th+ Th+ limit-def., fixed 𝛾

Thm 16 an-input - - ✗ Th+ Th+ Th+ (𝛼,𝛾 )-monotonic

Table 1. Summary of our decidability results. The column, Schanuel, indicates whether the result is conditional
on Schanuel’s conjecture. The column, Problem, indicates if the decision problem is Accuracy-at-all-inputs
or Accuracy-at-an-input. The column, Infinite Inputs, indicates if the result allows real variables as inputs.
Note that this column is relevant only for the Accuracy-at-all-inputs decision problem. The column, Infinite
Outputs, indicates if the result allows real variables as outputs. The columns, det(𝑃𝜖 ), 𝑑 and 𝑑 ′, indicate the
definability assumptions needed for deterministic function det(𝑃𝜖 ), input distance function 𝑑 and output
distance function 𝑑 ′. The column, Region 𝜂 indicates the assumptions needed on admissible region.

6.1 Definability assumptions
Let 𝑃𝜖 be a DiPWhile+ program with ℓ input DOM-variables, 𝑘 input real variables, 𝑚 output

DOM-variables, and 𝑛 output real variables. Observe that DOM is a subset of integers. Hence, the

input setU = DOMℓ × R𝑘 can be viewed as a subset of Rℓ+𝑘 , and the output setV as a subset of

R𝑚+𝑛 . Thus, det(𝑃𝜖 ) can be viewed as a partial function from Rℓ+𝑘 to R𝑚+𝑛 .
Also, observe that R∞ can be seen as a subset of R×R by identifying 𝑟 ∈ Rwith (0, 𝑟 ) and∞with

(1, 0). Thus, the input distance function, 𝑑 , can be viewed as a partial function from Rℓ+𝑘 × Rℓ+𝑘 to

R2
and the output distance function, 𝑑 ′, as a partial function from Rℓ+𝑘 × R𝑚+𝑛 × R𝑚+𝑛 to R2. Our

results shall require that these functions be definable in sub-theories of real arithmetic.

Finally, recall that the admissible region 𝜂 is a function that given a privacy budget 𝜖 and input 𝑢

gives the set of the set of all valid (𝛼, 𝛽,𝛾) for that 𝜖 and input 𝑢. Observe that 𝜂 can also be viewed

as a function that takes 𝛼, 𝛽,𝛾,𝑢 and 𝜖 as input and returns 1 if the triple (𝛼, 𝛽,𝛾) is in the set 𝜂 (𝜖,𝑢)
and 0 otherwise.

Definition 8. Let 𝑃𝜖 be a DiPWhile+ program implementing the deterministic function det(𝑃𝜖 ).
Let 𝑑 be a distance function on the set of inputs of 𝑃𝜖 and 𝑑

′
be the input-indexed distance function

on the set of outputs of 𝑃𝜖 . Let 𝑃𝜖 have ℓ input DOM-variables, 𝑘 input real variables,𝑚 output

DOM-variables, and 𝑛 real output variables. Let 𝜂 denote the admissible region.

• det(𝑃𝜖 ) is said to be definable in Th+,× (Th+ respectively) if it is definable in Th+,× (Th+
respectively) when viewed as a partial function from Rℓ+𝑘 to R𝑚+𝑛 .
• 𝑑 is said to be definable in Th+,× (Th+ respectively) if it is definable in Th+,× (Th+ respectively)
when viewed as a partial function from Rℓ+𝑘 × Rℓ+𝑘 to R2.

• 𝑑 ′ is said to be definable in Th+,× (Th+ respectively) if it is definable in Th+,× (Th+ respectively)
when viewed as a partial function from Rℓ+𝑘 × R𝑚+𝑛 × R𝑚+𝑛 to R2.

• The admissible region 𝜂 is said to be parametrically definable in Thexp if the partial function
ℎ : R3+ℓ+𝑘 × (0,∞) → R defined as

ℎ(𝑥,𝑦, 𝑧,𝑢, 𝜖) =
{

1 if 𝜖 > 0 and (𝑥,𝑦, 𝑧) ∈ 𝜂 (𝜖,𝑢)
0 otherwise

is parametrically definable in Thexp .
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Now, we could have chosen to write det(𝑃𝜖 ) in DiPWhile+ by considering programs that do

not contain any probabilistic assignments. Please note that a deterministic program written in

DiPWhile+ can be defined in Th+. Intuitively, this is because we do not allow assignments to

integer and real random variables inside loops of DiPWhile+ programs. Hence the loops can be

“unrolled”. This means that there are only finitely many possible executions of a deterministic

DiPWhile+ program, and these executions have finite length. The Boolean checks in the program

determine which execution occurs on an input, and these checks can be encoded as formulas in

linear arithmetic.

6.2 Decidability assuming Schanuel’s conjecture
We start by establishing the following Lemma, which says that if a DiPWhile+ program has only

finite outputs (i.e., onlyDOM-outputs) then the probability of obtaining an output 𝑣 is parametrically

definable in Thexp . The proof of this fact essentially mirrors the proof of the fact that this probability

is definable in Thexp (without parameters) for the (restricted) DiPWhile programs established

in Barthe et al. [2020b]. It based on the observation that it suffices to compute the probability of

reaching certain states (labeled exit states) of the DTMC semantics, which have 𝑣 as the valuation

over output variables. The reachability probabilities can be computed as a solution to a linear

program (with transition probabilities as the coefficients).

Lemma 11. Let 𝑃𝜖 be a DiPWhile+ program with finite outputs. Let 𝑃𝜖 have ℓ input DOM-variables,
𝑘 input real variables and𝑚 output variables. Given, 𝑣 ∈ DOM𝑚 , let Pr𝑣,𝑃𝜖 : Rℓ+𝑘+1 ↩→ R be the
partial function whose domain is DOMℓ × R𝑘+1, and which maps (𝑟, 𝜖) to the probability that 𝑃𝜖
outputs 𝑣 on input 𝑟 . For each 𝑣 , the function Pr𝑣,𝑃𝜖 is parametrically definable in Thexp .

The following result gives sufficient conditions under which the decision problem Accuracy-

at-all-inputs is decidable for DiPWhile+ programs. The conditions state that the deterministic

program and the input distance function be definable using first-order theory of real arithmetic.

The output distance distance function is required to be definable in the first-order theory of linear

arithmetic. Intuitively, this additional constraint is needed as it implies that we only need to compute

probabilities that the outputs reside in a region defined by linear equalities and linear inequalities.

Theorem 12. Assuming Schanuel’s conjecture, the problem Accuracy-at-all-inputs is decidable for
DiPWhile+ programs 𝑃𝜖 when (a) det(𝑃𝜖 ) is definable in Th+,×, (b) 𝑑 is definable in Th+,×, (c) 𝑑 ′ is
definable in Th+, and (d) 𝜂 is parametrically definable in Thexp .

The problem Accuracy-at-an-input is also decidable under the same constraints as given by

Theorem 12. This is established as a corollary to the proof of Theorem 12 (see Appendix C).

Corollary 13. Assuming Schanuel’s conjecture is true for reals, the problem Accuracy-at-an-input is
decidable for DiPWhile+ programs 𝑃𝜖 and rational inputs 𝑢 when (a) det(𝑃𝜖 ) is definable in Th+,×, (b)
𝑑 is definable in Th+,×, (c) 𝑑 ′ is definable in Th+, and (d) 𝜂 is parametrically definable in Thexp .

6.3 Unconditional Decidability Results
We shall now give sufficient conditions under which the problems Accuracy-at-an-input and

Accuracy-at-all-inputs will be decidable unconditionally, i.e., without assuming Schanuel’s con-

jecture. For these results, we will have to restrict the admissible region. All examples discussed

in Section 3 have regions that satisfy these restrictions under reasonable assumptions. We start

by defining one restriction on regions that will be needed by all our unconditional decidability

results. Intuitively, this restriction says that 𝛼,𝛾 are independent of the privacy budget, while 𝛽 is a

function of 𝛼,𝛾, 𝜖 and the input. In addition, we require that 𝛽 in the region is anti-monotonic in 𝛼

and 𝛾 (condition 5 below).
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Definition 9. The admissible region 𝜂 is simple if there is a partial function 𝐼𝛼,𝛾 : R𝑝 ↩→
𝔓(R≥0 × R≥0) and a partial function 𝑓𝛽 : R2+𝑝 × (0,∞) ↩→ [0, 1] such that

(1) 𝑑𝑜𝑚𝑎𝑖𝑛(𝐼𝛼,𝛾 ) = U whereU ⊆ R𝑝 ,
(2) 𝑑𝑜𝑚𝑎𝑖𝑛(𝑓𝛽 ) = {(𝑎, 𝑐,𝑢, 𝜖) | 𝑢 ∈ U, (𝑎, 𝑐) ∈ 𝐼𝛼,𝛾 (𝑢), 𝜖 > 0)},
(3) 𝑓𝛽 is parametrically definable in Thexp,
(4) (𝑎, 𝑏, 𝑐) ∈ 𝜂 (𝜖,𝑢) iff (𝑎, 𝑐) ∈ 𝐼𝛼,𝛾 (𝑢), 𝑢 ∈ U and 𝑓𝛽 (𝑎, 𝑐,𝑢, 𝜖) = 𝑏, and

(5) for all 𝜖,𝑢, 𝑎1, 𝑎2, 𝑐1, 𝑐2 with (𝑎𝑖 , 𝑐𝑖 ) ∈ 𝐼𝛼,𝛾 (𝑢) for 𝑖 ∈ {1, 2}, and𝑎1 ≤ 𝑎2, 𝑐1 ≤ 𝑐2, 𝑓𝛽 (𝑎2, 𝑐2, 𝑢, 𝜖) ≤
𝑓𝛽 (𝑎1, 𝑐1, 𝑢, 𝜖).

Example 5. Let 𝑃𝜖 be a program withU as the set of inputs. Let 𝜂1 be the region defined as follows.

For each 𝜖 > 0 and input 𝑢 ∈ U, 𝜂1 (𝑢, 𝜖) = {(𝑎, 𝑏, 0) | 𝑎 ≥ 0, 𝑏 = 𝑒−
𝑎𝜖
2 }. 𝜂1 is a simple region with

𝐼𝛼,𝛾 (𝑢) =
{
{(𝑎, 0) | 𝑎 ≥ 0} if 𝑢 ∈ U
undefined otherwise

and

𝑓𝛽 (𝑎, 𝑐,𝑢, 𝜖) =
{
𝑒−

𝑎𝜖
2 if 𝑎 ∈ R≥0, 𝑐 = 0, 𝑢 ∈ U, 𝜖 > 0

undefined otherwise.

Notice that, since 𝑒−
𝑎

2
𝜖

2 ≤ 𝑒−
𝑎

1
𝜖

2 if 𝑎1 ≤ 𝑎2, the region 𝜂1 satisfies condition 5 of Definition 9.

On the other hand, the region 𝜂2 defined as 𝜂2 (𝑢, 𝜖) = {(𝑎, 𝑏, 0) | 𝑎 ≥ 𝜖, 𝑏 = 𝑒−
𝑎𝜖
2 } is not a simple

region because 𝛼 depends on 𝜖.

Remark. For the rest of this section, we assume that 𝜂 is represented by the pair (𝐼𝛼,𝛾 , 𝑓𝛽 ). For
inputs to decision problems, 𝑓𝛽 will be represented by the formulas (𝜓𝛽 , 𝜙𝛽 ) defining it. 𝐼𝛼,𝛾 will

usually represented by a first-order formula 𝜃𝛼,𝛾 (𝑥𝛼 , 𝑥𝛾 , 𝑥) such that for all 𝑎, 𝑐,𝑢, (𝑎, 𝑐) ∈ 𝐼𝛼,𝛾 (𝑢) iff
𝜃𝛼,𝛾 (𝑎, 𝑐,𝑢) is true.
Program with infinite outputs. We start by showing that the problem of checking accuracy for

DiPWhile+ programs at a rational input𝑢 is decidable when we fix 𝛼,𝛾 to be some rational numbers.

For this result, we shall require that the deterministic function det(𝑃𝜖 (𝑢)) be definable in Th+ .
This implies that the output of the function at 𝑢 must be rational. The proof essentially requires

that the program 𝑃new
𝜖 constructed in the proof of Theorem 12 be executed on 𝑢, det(𝑃𝜖 (𝑢)) and 𝛾 .

The assumption that det(𝑃𝜖 (𝑢)) is definable in Th+ will ensure that the inputs to 𝑃new
𝜖 are rational

numbers. Thus, the probability of 𝑃𝜖 generating an output on input 𝑢 that is at most 𝛾 away, can

then be defined in Thexp. This observation, together with the parametric definability of 𝑓𝛽 allows

us to show that the sentence constructed in the proof of Corollary 13 that checks accuracy at 𝑢 is a

sentence in Lexp . In the decision procedure, we need to provide only the fixed values of 𝛼 and 𝛾 as

a description of 𝐼𝛼,𝛾 . The formal proof can be found in Appendix E.

Theorem 14. The problem Accuracy-at-an-input is decidable for DiPWhile+ programs 𝑃𝜖 and
rational inputs 𝑢 when (a) det(𝑃𝜖 ) is definable in Th+, (b) 𝑑 is definable in Th+,×, (c) 𝑑 ′ is definable in
Th+, (d) 𝜂 = (𝐼𝛼,𝛾 , 𝑓𝛽 ) such that 𝜂 is simple and 𝐼𝛼,𝛾 (𝑢) = {(𝑎, 𝑐)} for some rational numbers 𝑎, 𝑐.

One natural question is if the above result can be extended to checking accuracy for varying

𝛼,𝛾 . We shall show that, with additional restrictions, we can establish decidability of Accuracy-at-

an-input when only 𝛾 is fixed. Intuitively, this result will exploit the fact that for a given input 𝑢,

the interesting 𝛼 to consider is the distance to disagreement for 𝑢 (as 𝛽 decreases with increasing

𝛼). We can then proceed as in the proof of Theorem 14. This idea mostly works except that one has

to ensure that the distance to disagreement is a rational number to apply Theorem 14; the function

𝑓𝛽 does not jump at the point of disagreement; and that we can compute 𝑓𝛽 at∞ (for the case when

the distance to disagreement is∞). The following definition captures the latter two restrictions.
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Definition 10. The simple region 𝜂 = (𝐼𝛼,𝛾 , 𝑓𝛽 ) is said to be limit-definable if

(1) There is a linear arithmetic formula 𝜃𝛼,𝛾 (𝑥𝛼 , 𝑥𝛾 , 𝑥) such that for all 𝑎, 𝑐,𝑢, (𝑎, 𝑐) ∈ 𝐼𝛼,𝛾 (𝑢) iff
𝜃𝛼,𝛾 (𝑎, 𝑐,𝑢) is true.

(2) There is a partial function ℎ𝛽 : R∞ × R∞ × R𝑝 × (0,∞) ↩→ [0, 1] (called 𝑓𝛽 ’s limit extension)
such that ℎ𝛽 has the following properties.

• 𝑑𝑜𝑚𝑎𝑖𝑛(ℎ𝛽 ) is the set of all (𝑎, 𝑐,𝑢, 𝜖) ∈ R∞ × R∞ × R𝑝 × (0,∞) such that there is a non-

decreasing sequence {(𝑎𝑖 , 𝑐𝑖 )}∞𝑖=0
∈ 𝐼𝛼,𝛾 (𝑢) (i.e., 𝑎𝑖 ≤ 𝑎𝑖+1, 𝑐𝑖 ≤ 𝑐𝑖+1) with lim𝑖→∞ (𝑎𝑖 , 𝑐𝑖 ) =

(𝑎, 𝑐).
• For any non-decreasing sequence {(𝑎𝑖 , 𝑐𝑖 )}∞𝑖=0

∈ 𝐼𝛼,𝛾 (𝑢) such that lim𝑖→∞ (𝑎𝑖 , 𝑐𝑖 ) = (𝑎, 𝑐),
ℎ𝛽 (𝑎, 𝑐,𝑢, 𝜖) = lim𝑖→∞ 𝑓𝛽 (𝑎𝑖 , 𝑐𝑖 , 𝑢, 𝜖).
• ℎ𝛽 is parametrically definable in Thexp .

Observe that 𝑓𝛽 and its limit extension ℎ𝛽 agree on 𝑑𝑜𝑚𝑎𝑖𝑛(𝑓𝛽 ). Therefore, a limit-definable region

𝜂 = (𝐼𝛼,𝛾 , 𝑓𝛽 ) shall be represented by a triple (𝜃𝛼,𝛾 ,𝜓ℎ, 𝜙ℎ) where (𝜓ℎ, 𝜙ℎ) defines ℎ𝛽 (the limit

extension of 𝑓𝛽 ).

Intuitively, the first requirement ensures that the 𝛼 that needs to be considered for a fixed 𝛾 is

rational. The second requirement ensures that 𝑓𝛽 is continuous “from below" and can be extended

to its boundary (including the case when 𝛼 takes the value∞.) Note that𝜓ℎ can be written in the

theory of linear arithmetic thanks to the fact that 𝜃𝛼,𝛾 is a linear arithmetic formula.

Example 6. The region 𝜂1 in Example 5 can be seen to limit-definable with 𝜃𝛼,𝛾 (𝑥𝛼 , 𝑥𝛾 , 𝑥) = ((𝑥𝛼 ≥
0) ∧ (𝑥𝛾 = 0)) and ℎ𝛽 as follows:

ℎ𝛽 (𝑎, 𝑐,𝑢, 𝜖) =


0 if 𝑎 = ∞, 𝑐 = 0, 𝑢 ∈ U, 𝜖 > 0

𝑒−
𝑎𝜖
2 if 𝑎 ∈ R≥0, 𝑐 = 0, 𝑢 ∈ U, 𝜖 > 0

undefined otherwise.

An example of a region that is simple but not limit-definable is the region 𝜂3 defined as follows.

Given 𝑢 ∈ U, 𝜖 > 0, 𝜂3 (𝑢, 𝜖) = {(𝑎, 𝑏, 0) | either (0 ≤ 𝑎 < 1∧𝑏 = 𝑒−
𝑎𝜖
2 ) or (1 ≤ 𝑎 ∧𝑏 = 𝑒−

3𝑎𝜖
5 )}. 𝜂3

is not limit-definable as parameter 𝛽 has a “discontinuity" at 𝛼 = 1.

We have the following theorem that shows that checking Accuracy-at-an-input is decidable

for fixed 𝛾 . Please note that we require 𝑑 to be definable in Th+ to ensure that the distance to

disagreement for a rational input is rational. All examples considered in Section 3 satisfy these

constraints. In the decision procedure, the fixed value of 𝛾 , 𝑐 , is encoded in the formula 𝜃𝛼,𝛾 . The

proof can be located in Appendix F.

Theorem 15. The problem Accuracy-at-an-input is decidable for DiPWhile+ programs 𝑃𝜖 and
rational inputs 𝑢 when
(1) det(𝑃𝜖 ), 𝑑, 𝑑 ′ are definable in Th+, and
(2) 𝜂 = (𝜃𝛼,𝛾 ,𝜓ℎ, 𝜙ℎ) is limit-definable and there is a rational number 𝑐 such that for all 𝑎, 𝑐 ′, 𝑢, if

𝜃𝛼,𝛾 (𝑎, 𝑐 ′, 𝑢) is true then 𝑐 ′ = 𝑐.

Program with finite outputs. We now turn our attention to programs with finite outputs. For such

programs, 𝛾 is often 0. If that is the case, then we can appeal to Theorem 15 directly. However, for

some examples, 𝛾 may not be 0 (for example, NoisyMax in Section 3.3).

When a program has only finite outputs, for each input 𝑢, 𝑑 ′(𝑢, 𝑣, 𝑣 ′) can take only a finite

number of distinct values. This suggests that we need to check accuracy at input 𝑢 for only a finite

number of possible values of 𝛾, namely the distinct values of 𝑑 ′(𝑢, 𝑣, 𝑣 ′). Then as in Theorem 15,

we can check for accuracy at these values of 𝛾 by setting the 𝛼 parameter to be dd(𝑃𝜖 , 𝑢), the
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distance to disagreement for 𝑢. We need a monotonicity condition that ensures the soundness of

this strategy.

Definition 11. Let 𝜂 = (𝜃𝛼,𝛾 , 𝑓𝛽 , ℎ𝛽 ) be a limit-definable region. Given 𝑢 and non-negative 𝑎 ∈
R∞, 𝑐 ∈ R, let 𝐼<𝑎,𝑐 (𝑢) be the set {𝑎′ | 𝜃𝛼,𝛾 (𝑎′, 𝑐,𝑢) is true, 𝑎′ < 𝑎}. 𝜂 is said to be (𝛼,𝛾)-monotonic

if for each 𝑢 and non-negative real numbers 𝑐1, 𝑐2, 𝑎 such that 𝐼<𝑎,𝑐1
(𝑢) ≠ ∅ and 𝐼<𝑎,𝑐2

(𝑢) ≠ ∅,
𝑐1 ≤ 𝑐2 ⇒ sup(𝐼<𝑎,𝑐1

(𝑢)) ≤ sup(𝐼<𝑎,𝑐2
(𝑢)).

We have the following result whose proof can be found in Appendix G.

Theorem 16. The problem Accuracy-at-an-input is decidable for DiPWhile+ programs 𝑃𝜖 and
rational inputs 𝑢 when (a) 𝑃𝜖 has finite outputs, (b) det(𝑃𝜖 ), 𝑑, 𝑑 ′ are definable in Th+, and (c) 𝜂 is
(𝛼,𝛾)-monotonic.

When the program 𝑃𝜖 has finite inputs and finite outputs, we can invoke Theorem 16 repeatedly

to check for accuracy at all possible inputs. The following is an immediate corollary of Theorem 16.

Corollary 17. The problem Accuracy-at-all-inputs is decidable for DiPWhile+ programs 𝑃𝜖 when
(a) 𝑃𝜖 has finite inputs and finite outputs, (b) det(𝑃𝜖 ), 𝑑, 𝑑 ′ are definable in Th+, and (c) 𝜂 is (𝛼,𝛾)-
monotonic.

7 EXPERIMENTS
We implemented a simplified version of the algorithm for verifying accuracy of DiPWhile+ pro-

grams. Our tool DiPC+ handles loop-free programs with finite, discrete input domains, and whose

deterministic function has discrete output. Programs with bounded loops (with constant bounds)

are be handled by unrolling. The restriction that the deterministic function has discrete output

does not preclude programs with real outputs, as they can be modeled in the subset of DiPWhile+
that the tool handles. We discuss this further below.

The tool takes as input a program 𝑃𝜖 parametrized by 𝜖 and an input-output table representing

det(𝑃𝜖 ) for a set of inputs, and either verifies 𝑃𝜖 to be (𝛼, 𝛽,𝛾)-accurate for each given input and

for all 𝜖 > 0 or returns a counterexample, consisting of a specific input and a value for 𝜖 at which

accuracy fails. We choose values of 𝛼, 𝛽,𝛾 depending on the example. As accuracy claims in Section 3

show, 𝛽 is typically given as a continuous function of 𝜖, 𝛼 and 𝛾 . For such continuous 𝛽 , we can

use 𝛼 ≤ dd(𝑃,𝑢) in the definition of accuracy instead of 𝛼 < dd(𝑃,𝑢) (see Definition 2 on Page

6). In our experiments, we fix 𝛾 to be some integer. For a given input 𝑢, 𝛼 is usually set to be the

distance to disagreement for the input being checked. 𝛽 can thus be viewed as a function of 𝜖

and the input 𝑢. The proof of Theorem 15 implies that such checks are necessary and sufficient

to conclude accuracy at the given inputs for fixed 𝛾, and all possible values of 𝜖 and 𝛼 . In many

examples, the only value for 𝛾 that needs to be verified is 0.

DiPC+ is implemented in C++ and uses Wolfram Mathematica®. It works in two phases. In

the first phase, a Mathematica script is produced with commands for the input-output probability

computations and the subsequent inequality checks. In the second phase, the generated script is

run on Mathematica. We only verify accuracy-at-an-input and not accuracy-at-all-inputs as our

decision procedure for the latter problem is subject to Schanuel’s conjecture.

We test the ability of DiPC+ to verify accuracy-at-an-input for four examples from Section 3:

Sparse, NoisyMax, Laplace Mechanism (denoted Laplace below), and NumericSparse. We also

verify a variant of Sparse which we refer to as SparseVariant (the difference is discussed in 7.1

below). The pseudocode is shown in Figures 1 and 2 on Pages 8 and 10 respectively; we omit the

pseudocode for Laplace and refer the reader to its description in Section 3. Three of the examples,

Sparse, SparseVariant, and NoisyMax, have discrete output and thus their deterministic functions,
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det(Sparse), det(SparseVariant), and det(NoisyMax), are naturally modeled with a finite input-

output table. The other two examples, Laplace and NumericSparse, can be modeled using a finite

input-output table as follows. Given 𝛾 , we can compute the deterministic function alongside the

randomized function and instrument the resulting program to check that all continuous outputs are

within the error tolerance given by 𝛾 , outputting ⊤ if so. The finite input-output table can reflect

this scheme by regarding the instrumented program as a computation which outputs ⊤.
Our experiments test two claims. We first test the performance of DiPC+ by measuring how

running time scales with increasing input sizes and example parameters. Running times are given

in Tables 2 and 3. Here the parameter𝑚 is the length of input arrays and a range [−ℓ, ℓ] is the range
of all possible integer values that can be stored in each array location. Thus, we have (2ℓ + 1)𝑚
possible inputs. Hence, the tool behaves roughly polynomial in ℓ and exponential in 𝑚. In the

second part of our experiments, we show that DiPC+ is able to obtain accuracy bounds that are

better than those known in the literature, and generate counterexamples when accuracy claims

are not true. All experiments were run on an Intel®Core i7-6700HQ @ 2.6GHz CPU with 16GB

memory. In the tables, running times are reported as (T1/T2), where T1 refers to the time needed by

the C++ phase to generate the Mathematica scripts and T2 refers to the time used by Mathematica

to check the scripts. In some tables we omit T1 when it is negligible compared to T2.

We note the following about the experimental results.

(1) DiPC+ verifies accuracy in reasonable time. The time needed to generate Mathematica scripts

is significantly smaller than the time taken by Mathematica to check the scripts (i.e., T1≪
T2). Most of the time spent by Mathematica goes toward computing output probabilities.

(2) DiPC+ is able to verify that accuracy holds with smaller error probabilities than those known

in the literature.

(3) Verifying accuracy is faster than verifying differential privacy. Differential privacy involves

computing, for any specific input, a probability for each possible output, whereas in accuracy

we only need to compute the single probability for each input-output pair given by the

deterministic function.

7.1 Performance
Table 2a shows running times for Sparse and SparseVariant. SparseVariant differs from Sparse
by only sampling a single noisy threshold, whereas Sparse samples a fresh noisy threshold each

time it finds a query above the current noisy threshold; the pseudocode for SparseVariant is the
same as Sparse (Figure 1), except for the re-sampling of r𝑇 inside the for-loop (shown in bold).

Generally, running time increases in the number of inputs that have to be verified. For both

Sparse and SparseVariant, we verify (𝛼, 𝛽, 0)-accuracy for all 𝛼, 𝛽 , with 𝛽 = 2𝑚𝑐𝑒−𝛼𝜖/8𝑐 . This can be

accomplished with single accuracy checks at 𝛼 = dd(Sparse, 𝑢) and 𝛼 = dd(SparseVariant, 𝑢), for
each input 𝑢, as discussed in the proof of Theorem 15. Observe there is a substantial performance

difference between Sparse and SparseVariant for 𝑐 > 1.When analyzing SparseVariant,DiPC+must

keep track of many possible relationships between random variables and the single noisy threshold.

This becomes expensive for many queries and large value of 𝑐 . On the other hand, whenever Sparse
samples a new noisy threshold, this has the effect of decoupling the relationship between future

queries and past queries. Table 2b shows results forNoisyMax, in which we verify (𝛼, 𝛽, 0)-accuracy
for all 𝛼, 𝛽 with 𝛽 =𝑚𝑒−𝛼𝜖/2. Here again, a single accuracy check at 𝛼 = dd(NoisyMax, 𝑢) suffices for

each input 𝑢. Table 2c shows results for Laplace, where we verify (0, 𝛽, 𝛾)-accuracy for all 𝛽,𝛾 , with
𝛽 = 𝑘𝑒−𝛾/𝜖 . Finally, Table 3 shows results for NumericSparse, where we verify (𝛼, 𝛽, 𝛼)-accuracy
for specific values of 𝛼 , with 𝛽 = (2𝑚 + 1)𝑐𝑒−𝛼𝜖/9𝑐 , i.e. the improved error probability bound from

Section 3. In this case, the accuracy claim holds for precisely (𝛼, 𝛽, 𝛼). This is because 𝛾 = 𝛼 is no
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𝑚 1 2 2 3 3 3 4 4 4 4

𝑐 1 1 2 1 2 3 1 2 3 4

Sparse 0s/12s 0s/45s 0s/45s 0s/97s 0s/90s 0s/89s 0s/195s 1s/189s 2s/189s 1s/195s

SparseVariant 0s/11s 0s/44s 0s/72s 0s/99s 0s/217s 0s/386s 1s/199s 1s/462s 1s/940s 1s/1467

(a) Sparse and SparseVariant

Range [−1, 1] [−2, 2] [−3, 3]
(T1/T2) 0s/148s 1s/823s 1s/2583s

(b) NoisyMax

𝛾 1 2 3

[−1, 1] 5s 6s 6s

[−2, 2] 9s 9s 8s

(c) Laplace

Table 2. (a) Running times for Sparse and SparseVariant, verifying (𝛼, 𝛽, 0)-accuracy for all 𝛼, 𝛽 , where 𝛽 = 2𝑚𝑐𝑒−𝛼𝜖/8𝑐 .
Accuracy is verified for all lists of𝑚 integer-valued queries ranging over [−1, 1]. The threshold𝑇 is set to be 0. (b) Running
times for NoisyMax with𝑚 = 3 and varying input range, verifying (𝛼, 𝛽, 0)-accuracy for all 𝛼, 𝛽 , with 𝛽 = 𝑚𝑒−𝛼𝜖/2. (c)
Running times for Laplace, verifying (0, 𝛽,𝛾 )-accuracy with 𝑘 = 2, Δ = 1, and 𝛽 = 𝑘𝑒−𝛾𝜖 .

𝑚 1 1 1 2 2 2 3 3 3 4 4 4

𝛼 1 1 2 1 1 2 1 1 2 1 1 2

Range [-1,1] [-2,2] [-2,2] [-1,1] [-2,2] [-2,2] [-1,1] [-2,2] [-2,2] [-1,1] [-2,2] [-2,2]

(T1/T2) 0s/18s 0s/36s 0s/19s 0s/65s 1s/287s 1s/68s 0s/178s 2s/1669s 1s/181s 2s/332s 20s/6065s 7s/350s

(a) NumericSparse with 𝑐 = 1

𝑚 2 2 2 3 3 3 4 4 4

𝛼 1 1 2 1 1 2 1 1 2

Range [-1,1] [-2,2] [-2,2] [-1,1] [-2,2] [-2,2] [-1,1] [-2,2] [-2,2]

(T1/T2) 0s/65s 0s/296s 0s/66s 0s/169s 2s/1537s 1s/170s 1s/311s 18s/5783s 3s/315s

(b) NumericSparse with 𝑐 = 2

Table 3. Running times for NumericSparse, verifying (𝛼, 𝛽, 𝛼)-accuracy for 𝛽 = (2𝑚 + 1)𝑐𝑒−𝛼𝜖/9𝑐 at specific values of
𝛼,𝑚, 𝑐 , and varying input ranges. Threshold𝑇 = 0 in both tables. The tables highlight scaling in run time as𝑚 and 𝛼 vary.
We use the improved expression for 𝛽 from Corollary 7.

longer constant, and we thus cannot leverage Theorem 15 for a stronger claim. Observe that when

the input range is [−ℓ, ℓ], then dd(NumericSparse, 𝑥) can take any integer value between 0 and ℓ .

Thus, even though we have set 𝛼 to be the same value in each individual experiment (and not the

distance to disagreement for the input), we vary 𝛼 across the experiments so as to ensure that for

each input 𝑥 , accuracy is eventually verified when 𝛼 is set to dd(NumericSparse, 𝑢).

7.2 Improved Accuracy Bounds and Counterexamples
In Tables 4a, 4b, and 4c, we summarize the results of verifying better accuracy bounds than

those known in the literature for Sparse, SparseVariant, NoisyMax, and NumericSparse. For each
algorithm and parameter choice, we display the best accuracy bound obtained by searching for

the largest integer 𝜅 for which DiPC+ was able to verify (𝛼, 𝛽/𝜅, 𝛾)-accuracy, where 𝛼, 𝛽,𝛾 are

the corresponding values from the experiments in Subsection 7.1. In each row, we include a

counterexample returned by the tool after a failed attempt to verify (𝛼, 𝛽/𝜅+1, 𝛾)-accuracy. Each
counterexample consists of both an 𝜖 and a specific input 𝑢 at which the accuracy check failed.

8 RELATEDWORK
Accuracy proofs. The Union Bound logic of Barthe et al. [2016b] is a program logic for upper

bounding errors in probabilistic computation. The logic is a form of lightweight probabilistic
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Algorithm 𝑐 𝛽 Best (T1/T2) Counterexample (T1/T2)

Sparse 1 6𝑒−𝛼𝜖/8 1/6 0s/101s 1/7, 𝑢 = [−1,−1, 1], 𝜖 = 17/10 0s/110s

Sparse 2 12𝑒−𝛼𝜖/16
1/12 0s/91s 1/13, 𝑢 = [1,−1, 1], 𝜖 = 50/19 0s/95s

SparseVariant 1 6𝑒−𝛼𝜖/8 1/6 0s/99s 1/7, 𝑢 = [−1,−1, 0], 𝜖 = 67/106 0s/111s

SparseVariant 2 12𝑒−𝛼𝜖/16
1/13 0s/220s 1/14, 𝑢 = [−1,−1,−1], 𝜖 = 17/13 0s/216s

(a) Improved accuracy bounds for Sparse and SparseVariant, with𝑚 = 3.

𝑚 𝛽 Best (T1/T2) Counterexample (T1/T2)

3 3𝑒−𝛼𝜖/2 1/4 0s/154s 1/5, 𝑢 = [−1, 0, 0], 𝜖 = 27/82 0s/176s

4 4𝑒−𝛼𝜖/2 1/4 0s/874s 1/5, 𝑢 = [0, 0, 1, 0], 𝜖 = 52/23 0s/910s

(b) Improved accuracy bounds for NoisyMax.

𝛼 𝑐 𝛽 Best (T1/T2) Counterexample (T1/T2)

1 1 7𝑒
−𝜖/9

1/3 1s/174s 1/4, 𝑢 = [−1,−1, 1], 𝜖 = 37 1s/173s

1 2 14𝑒
−𝜖/18

1/5 1s/162s 1/6, 𝑢 = [−1, 1, 1], 𝜖 = 59 1s/167s

(c) Improved accuracy bounds for NumericSparse, with𝑚 = 3.

Table 4. Accuracy is checked for all vectors of length𝑚 with entries ranging over [-1,1]. Best column displays
1/𝜅, where 𝜅 is the largest integer for which the tool verified accuracy. The counterexample column displays
1/𝜅+1 along with 𝜖 and input 𝑢 at which the accuracy check failed. We include 𝛽 for clarity because of its
dependence on 𝑐 .

program logic: assertions are predicates on states, and probabilities are only tracked through

an index that accounts for the cumulative error. The Union bound logic has been used to prove

accuracy bounds for many of the algorithms considered in this paper. However, the proofs must

be constructed manually, often at considerable cost. Moreover, all reasoning about errors use

union bounds, so precise bounds that use concentration inequalities are out of scope of the logic.

Finally, the proof system is sound, but incomplete. For instance, the proof system cannot deal with

arbitrary loops. In contrast, our language allows for arbitrary loops and we provide a decision

procedure for accuracy. Trace Abstraction Modulo Probability (TAMP) in Smith et al. [2019], is

an automated proof technique for accuracy of probabilistic programs. TAMP generalizes the trace

abstraction technique of Heizmann et al. [2009] to the probabilistic setting. TAMP follows the

same lightweight strategy as the union bound logic, and uses failure automata to separate between

logical and probabilistic reasoning. TAMP has been used for proving accuracy of many algorithms

considered in this paper. However, TAMP suffers from similar limitations as the Union Bound logic

(except of course automation): it is sound but incomplete, and cannot deal with arbitrary loops and

concentration inequalities.

Privacy proofs. There is a lot of work on verification and testing of privacy guarantees [Albargh-

outhi and Hsu 2018; Barthe et al. 2020a, 2013; Bichsel et al. 2018; Ding et al. 2018; Gaboardi et al.

2013; Reed and Pierce 2010; Zhang and Kifer 2017]. We refer to [Barthe et al. 2016c] for an overview.

Program analysis. There is a large body of work that lifts to the probabilistic setting classic

program analysis and program verification techniques, including deductive verification [Kaminski

2019; Kozen 1985; Morgan et al. 1996], model-checking [Katoen 2016; Kwiatkowska et al. 2010],

abstract interpretation [Cousot and Monerau 2012; Monniaux 2000], and static program analy-

sis [Sankaranarayanan et al. 2013; Wang et al. 2018]. Some of these approaches rely on advanced

techniques from probability theory, including concentration inequalities [Sankaranarayanan 2020]

and martingales [Barthe et al. 2016a; Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016;

Kura et al. 2019; Wang et al. 2020] for better precision.
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These techniques can compute sound upper bounds of the error probability for a general class of

probabilistic programs. However, this does not suffice to make them immediately applicable to our

setting, since our definition of accuracy involves the notion of distance to disagreement. Moreover,

these works generally do not address the specific challenge of reasoning in the theory of reals with

exponentials. Finally, these techniques cannot be used to prove the violation of accuracy claims;

our approach can both prove and siprove accuracy claims.

Hyperproperties. Hyperproperties [Clarkson and Schneider 2010] are a generalization of program

properties and encompass many properties of interest, particularly in the realm of security and

privacy. Our definition of accuracy falls in the class of 3-properties, as it uses two executions of

𝑑𝑒𝑡 (𝑃) for defining distance to disagreement, and a third execution of 𝑃 for quantifying the error.

There is a large body of work on verifying hyperproperties. While the bulk of this literature

is in a deterministic setting, there is a growing number of logics and model-checking algorithms

from probabilistic hyperproperties [Ábrahám and Bonakdarpour 2018; Dimitrova et al. 2020; Wang

et al. 2019]. To our best knowledge, these algorithms do not perform parametrized verification, and

cannot prove accuracy for all possible values of 𝜖 .

9 CONCLUSIONS
We have introduced a new uniform definition of accuracy, called (𝛼, 𝛽,𝛾)-accuracy, for differential
privacy algorithms. This definition adds an additional parameter 𝛼 , that accounts for distance to

disagreement, to the traditional parameters 𝛽 and𝛾 . This uniform, generalized definition can be used

to unify under a common scheme different accuracy definitions used in the literature that quantify

the probability of getting approximately correct answer, including ad hoc definitions for classical
algorithms such as AboveThreshold, Sparse, NumericSparse, NoisyMax and others. Using the

(𝛼, 𝛽,𝛾) frame work of accuracy we were able to improve the accuracy results for NumericSparse.
We have shown that checking (𝛼, 𝛽,𝛾)-accuracy is decidable for a non-trivial class of algorithms

with finite number of real inputs and outputs, that are parametrized by privacy parameter 𝜖 ,

described in our expanded programming language DiPWhile+, for all values of 𝜖 within a given

interval 𝐼 , assuming that Schanuel’s conjecture. We have also shown that the problem of checking

accuracy at a single input decidable under reasonable assumptions without assuming Schanuel’s

conjecture for programs in DiPWhile+, even when the inputs and outputs can take any real values.

This implies that checking accuracy is decidable for programs whose inputs and outputs take

values in finite domains. Finally, we presented experimental results implementing our approach by

adapting DiPC to check accuracy at specified inputs for AboveThreshold, Sparse, NumericSparse
and NoisyMax.
In the future, it would be interesting to study how our decision procedures could be used for

automatically proving concentration bounds, and how it could be integrated in existing frameworks

for accuracy of general-purpose probabilistic computations. It would also be interesting to extend

our results and the results from Barthe et al. [2020a] to accommodate unbounded number of inputs

and outputs, and other probability distributions, e.g. Gaussian mechanism. On a more practical side,

it would be interesting to study the applicability of our techniques in the context of the accuracy

first approach from Ligett et al. [2017].
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