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We identify a decidable synthesis problem for a class of programs of unbounded size with conditionals

and iteration that work over infinite data domains. The programs in our class use uninterpreted functions

and relations, and abide by a restriction called coherence that was recently identified to yield decidable

verification. We formulate a powerful grammar-restricted (syntax-guided) synthesis problem for coherent

uninterpreted programs and show the problem to be decidable. We identify its precise complexity, which

is doubly exponential in the set of program variables and linear in the size of the grammar. The decision

procedure uses tree automata which accept finite syntax trees of all correct programs. It checks that each of

the infinitely many executions for a given program is correct using a finite memory streaming congruence

closure algorithm. We also study variants of uninterpreted program synthesis: synthesis of transition systems

with lower complexity (EXPTIME), synthesis of recursive programs, and synthesis of Boolean programs. We

also show undecidability results that argue the necessity of our restrictions.

1 INTRODUCTION
Program synthesis is a thriving area of research that addresses the problem of automatically con-

structing a program which meets a user-given specification [Alur et al. 2015; Gulwani et al. 2015,

2017]. Synthesis specifications can be expressed in various ways — as input-output examples [Gul-

wani 2011; Gulwani et al. 2012], temporal logic specifications for reactive programs [Pnueli and

Rosner 1989], logical specifications [Alur et al. 2015, 2018], etc. Many targets for program synthesis

exist, ranging from transition systems [Kupferman et al. 2000; Pnueli and Rosner 1989], logical

expressions [Alur et al. 2015], imperative programs [Solar-Lezama et al. 2006], distributed transition

systems/programs [Madhusudan and Thiagarajan 2001; Muscholl and Walukiewicz 2014; Pnueli

and Rosner 1990], holes in programs [Solar-Lezama et al. 2006], repairs of programs [Singh et al.

2013], etc.

A classical stream of program synthesis research is one that emerged from a problem proposed by

Church [Church 1960] in 1960 for Boolean circuits. Seminal results by Büchi and Landweber [Buchi

and Landweber 1969] and Rabin [Rabin 1972] led to a mature understanding of the problem,

including connections to infinite games played on finite graphs and automata over infinite trees

(see [Grädel et al. 2002; Kupferman et al. 2010] for surveys of this theory). Tractable synthesis for

temporal logics like LTL, CTL, and their fragments was investigated and several applications for

synthesizing hardware circuits emerged [Bloem et al. 2007, 2012]. A fundamental result for this

work is that, though the class of allowed systems is infinite and programs are allowed unbounded
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memory/state, whenever a program is feasible for a specification it is always possible to realize it

using a finite-state transition system.

In recent years, the field has taken a different track altogether, tackling synthesis of programs

that work over infinite domains such as strings [Gulwani 2011; Gulwani et al. 2012], integers [Alur

et al. 2015; Solar-Lezama et al. 2006], and heaps [Qiu and Solar-Lezama 2017]. Typical solutions

derived in this line of research involve (a) bounding the class of programs to a finite set (perhaps

iteratively increasing the class) and (b) searching the space of programs using techniques like

symmetry-reduced enumeration, SAT engines, or even random walks [Alur et al. 2015, 2018],

typically guided by counterexamples (CEGIS) [Jha and Seshia 2017; Löding et al. 2016; Solar-Lezama

et al. 2006]. Note that iteratively searching larger classes of programs allows synthesis engines to

find a program if one exists, but it does not allow one to conclude that there is no program that

satisfies the specification. Consequently, in this stream of research, decidability results are not

common (see Section 10 for some exceptions in certain heavily restricted cases).

In this paper we present, to the best of our knowledge, the first decidability results for synthesizing
programs with iterations/recursion of arbitrary size that work on infinite data domains; in particular,
decidable synthesis of a subclass of programs that use uninterpreted functions and relations.
Our primary contribution is a decidability result for realizability and synthesis of a restricted

class of imperative uninterpreted programs. Uninterpreted programs work over infinite data models

that give arbitrary meanings to their functions and relations. Such programs satisfy their assertions

if they hold along all executions on every model that interprets the functions and relations. The

theory of uninterpreted functions and relations is a well-studied theory— classically studied in 1929

by Gödel where completeness results were shown [Davis 1990] and, more recently, its decidable

quantifier-free fragment exploited in SMT solvers in combination with other theories [Bradley

and Manna 2007]. In recent work [Mathur et al. 2019], the authors establish that for a subclass of

uninterpreted programs, called coherent programs, the verification problem is decidable. Note that

in this verification problem there are no user-given loop invariants; the verification engine finds

inductive invariants and proves them automatically in order to prove program correctness.

In this paper, we consider the synthesis problem for coherent uninterpreted programs. The user

gives a grammar G that can generate well-formed programs in our programming language. This

grammar is allowed to force programs to have assert statements at various points, which collectively

act as the specification. The program synthesis problem is then to determine whether there is a

coherent program conforming to the grammar G that satisfies all assertions in all executions when

running on any data model that gives meaning to function and relation symbols.

Our primary technical result is that the realizability problem (checking the existence a program

conforming to the grammar and satisfying its assertions) is decidable for the class of coherent

uninterpreted programs. Furthermore, we prove that the problem is 2EXPTIME-complete. And

whenever a correct coherent program that conforms to the grammar exists, we can synthesize one.

We also show that the realizability/synthesis problem is undecidable if the coherence restriction is

dropped. In fact we show a stronger result that the problem is undecidable even for synthesis of

straight-line programs (without conditionals and iteration!).

Coherence of programs is a technical restriction introduced in [Mathur et al. 2019]. It consists

of two properties, both of which were individually proven to be essential for ensuring that pro-

gram verification is decidable. The first one, called memoizing, says, intuitively, that functions are
evaluated on any tuple of terms only once (strictly speaking, multiple evaluations are allowed if

the computed value is already present in one of the program variables). The second restriction,

called early-assumes, requires executions to always make equality assumptions on variables (using

conditional branches) early, before computing functions on them. When automatically synthesizing

programs over infinite domains, we need to be able to at least automatically verify a conjectured

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: October 2019.



Decidable Synthesis of Programs with Uninterpreted Functions 3

program on the domain without being given loop invariants. The class of coherent uninterpreted

programs is the only natural class of programs we are aware of that has recursion and works over

infinite domains with decidable verification. Consequently, this class is a natural target for proving

a decidable synthesis result.

The problem of synthesizing a program from a grammar with assertions is a powerful definition

of program synthesis. In particular, the grammar can be used to restrict the space of programs in

various ways. For example, we can restrict the space of programs syntactically by disallowing while

loops. Or, for a fixed n, by using a set of Boolean variables linear in n and demanding a loop body

to strictly increment a counter encoded using these variables, we can demand that while loops

terminate in a linear/polynomial/exponential number of iterations. We can also implement while

loops that do not always terminate, but terminate only when the data model satisfies particular

properties. For example, we can insist that a while loop iterates through the nodes of a linked list

segment from x to y by demanding the occurrence of ‘x := next(x)’ in the body and ‘x , y’ as the
loop guard.

Grammar-restricted program synthesis can also express the synthesis of programs with holes,

used in systems like Sketch [Solar-Lezama 2013]. Here, one is given a sketch, which is a program

with holes (marked in code using ‘??’). The problem is to fill these holes using programs/expressions

conforming to a particular grammar so that the assertions in the program hold. It is easy to see that

the sketch and the grammar for holes can be easily expressed using a grammar in our setting (where

the skeleton in the sketch is “hard-coded” in the grammar). Synthesizing programs/expressions

using restricted grammars is also the cornerstone of the intensively studied SyGuS (syntax-guided

synthesis) format [Alur et al. 2015; SyGuS ]
1
.

The proof of our decidability result relies on tree-automata, a call-back to classical theoretical

approaches to synthesis. The key idea is to represent programs as trees (specifically program
trees), and build tree automata that accept trees corresponding to correct programs. The central

construction is to build a mother 2-way alternating tree automaton that accepts all program trees

of coherent programs that satisfy their assertions. Given a grammar G of programs (which has

to satisfy certain natural conditions), we show that there is a regular set of program trees for the

language of allowed programs L(G). Intersecting the automata for these two regular tree languages

and checking for emptiness establishes the upper bound. We crucially use the word automaton

construction from the decision procedure presented in [Mathur et al. 2019] (which itself is built

using a finite-memory streaming congruence closure algorithm) in order to build the mother tree

automaton, adapting ideas from [Madhusudan 2011] for building two-way automata over program

trees. The verification word automaton incurs an exponential blow-up in the number of program

variables, and the conversion of 2-way alternating tree automata to 1-way nondeterministic tree

automata causes another exponential blow-up. Our final decision procedure is doubly-exponential

in the number of program variables and linear in the size of the grammar.

We prove a matching lower bound. Using a reduction from the acceptance problem for alternating

exponential space Turingmachines (which is 2EXPTIME-complete), we show that program synthesis

of coherent uninterpreted programs is 2EXPTIME-hard in the number of variables. This reduction

forces the synthesized program to come up with a witnessing run for the Turing machine, where

the skeleton of the grammar performs small checks nondeterministically to ensure that the witness

encoded by the program is correct. The reduction is non-trivial in that programs (which correspond

to runs in the Turing machine) must simulate sequences of configurations, each of which is of

exponential size, by using only polynomially many variables.

1
Note, however, that both Sketch and SyGuS problems are defined using functions and relations that are interpreted using

standard theories like arithmetic, etc., and hence often do not admit decidable synthesis.
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Synthesis of Recursive Programs, Transition Systems, and Boolean programs
We study several other related synthesis problems. First, we show that we can extend our results

to synthesis of call-by-value recursive uninterpreted programs (with a fixed number of functions

and fixed number of local/global variables). This problem is also 2EXPTIME-complete but is more

complex, as even single executions simulated on the program tree must be split into separate copies,

with one executing the summary of a function call and the other proceeding under the assumption

that the call has returned in a summarized state.

We then study a synthesis problem for transition systems. Transition systems are similar to

programs in that they execute similar kinds of atomic statements. We allow the user to restrict

the set of allowable executions (using regular sets). Despite the fact that this problem seems very

similar to program synthesis, we show that it is an easier problem, and coherent transition system

realizability and synthesis can be solved in time exponential in the number of program variables

and polynomial in the automata that restrict executions. We prove a corresponding lower bound

and establish EXPTIME-completeness of this problem.

Finally, we note that our results also show, as a corollary, that grammar-restricted Boolean

program realizability/synthesis (and execution-restricted Boolean transition system synthesis) is de-

cidable, and is 2EXPTIME-complete (respectively, EXPTIME-complete). These results are themselves

new. The lower bound results for these hence show that coherent program synthesis/transition

synthesis is not particularly harder than Boolean program synthesis. Grammar-restricted Boolean

program synthesis is an important problem as it is implemented by several practical synthesis

systems such as Sketch [Solar-Lezama 2013].

Due to space restrictions, we present only proof gists in the paper; more extensive proofs can be

found in the Appendix.

2 ILLUSTRATIVE EXAMPLES
Let us illustrate some aspects of the different results in this paper with examples.

cipher := enc(secret, key);
assume(secret = dec(cipher, key));
⟨⟨ ?? | Cannot refer to secret or key ⟩⟩;
assert(z = secret)

(a) Decrypting a ciphertext

assume(T , F);
if (x = T) then b := T else b := F;
⟨⟨ ?? | Cannot refer to x or b ⟩⟩;
assert(y = b)

(b) Synthesis with incomplete information

Fig. 1. Motivating programs with holes to be filled by sub-programs

Example 1. Consider the program in Figure 1 (left). This program has a hole ‘⟨⟨ ?? | Cannot . . . ⟩⟩’,

that we intend to fill with a sub-program so that the entire program (together with the contents of

the hole) satisfies the assertion at the end. The sub-program corresponding to the hole is allowed to

use the variables cipher as well as some additional program variables y
1
, . . . , yn (for some fixed n),

but is not allowed to refer to key and secret in any manner. Intuitively, the above setting models

the encryption of a secret message secret with a key key. The assumption in the second line of

the program models the fact that the secret message can be decrypted from cipher and key. Here,
the functions enc and dec are uninterpreted functions and thus, the program we are looking for

is an uninterpreted program. For such a program, the assertion at the end “assert(z = secret)”
holds, if it holds for all models, i.e, for all interpretations of enc and dec, and for all initial values

of the different variables. With this setup, we are essentially asking whether a program that does

not have access to key can recover secret. It is easy to see that there is indeed no program that

satisfies the above requirement. The above modeling of keys, encryption, nonces, etc. is common
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in algebraic approaches to model cryptographic protocols [Dolev and Yao 1983; Durgin et al. 2004].

In Section 3.2, we will show how to model this problem in our framework.

Example 2. The program in Figure 1 (right) is another simple example of an unrealizable specifi-

cation. This program also illustrates the fact that the synthesized code has incomplete information
about the execution that led up to it. The program variables here are x, b, y. The hole in this partial

program is restricted so that it cannot refer to x or b, and it is easy to phrase the question for

synthesis of the complete program in terms of a grammar. Now, since the hole cannot access the

variable x, it cannot directly check if x = T or not. Further, it cannot check whether it is T or F as
it cannot refer to b. Consequently, it is easy to see that there is no program for the hole that can

ensure y is equal to b. Note that the code at the hole, apart from not being allowed to examine

some variables, is also implicitly prohibited from looking at the control path taken to reach the

hole. If we could synthesize two different programs, depending on the two control flows taken

to reach the hole, then we could set y := T when the then-branch of the condition is taken, and

set y := F if the else-branch is taken. However, program synthesis requires the hole to be filled

by a program independent of the control flow taken to reach the hole. The fact that the hole has

incomplete information about executions can be used to encode specifications using complex ghost

code, as we show in later examples. In Section 7, we explore a slightly different synthesis problem,

called transition system synthesis, where holes can be differently instantiated based on the history

of an execution.

Example 3. In this example, we are trying, roughly, to model the synthesis of a program that

checks whether a linked list pointed to by some node x has a key k. We model the next pointer as a
unary function next, and locations using elements in the data model.

In order to state the specification, we use ghost
code which is interleaved into a program. The pro-

gram skeleton has a while loop that essentially

advances the pointer variable x along the list until
NIL (a special constant modeled as an immutable

program variable) is reached (see template on the

right). The first hole ‘⟨⟨ ?? 1 ⟩⟩’ before the while-
loop and the second hole ‘⟨⟨ ?? 2 ⟩⟩’ within the

while-loop need to be filled so that the assertion

at the end is satisfied. We use three ghost vari-

ables in the skeleton: gans, gwitness, and gfound.
The ghost variable gans evaluates to whether we

expect to find k in the list or not, and hence at the

end the skeleton asserts that the Boolean variable

b computed by the holes is precisely gans. Note
that here we are assuming that the holes cannot

look at the ghost variables.

assume(T , F);
gfound := F;
⟨⟨ ?? 1 ⟩⟩;

while(x , NIL) {
if (gans , T) then assume(key(x) , k);
else if (gwitness = x) then {

assume (key(x) = k);
gfound := T;

};

⟨⟨ ?? 2 ⟩⟩;

x := next(x);
}

assume (gans = T ⇒ gfound = T);
assert b = T ⇐⇒ gans = T

However, the sketch needs to check that the answer gans is indeed correct. If gans is not T, then
we add the assumption that key(x) , k in each iteration of the loop, hence ensuring the key is not

present. For ensuring correctness in the case gans = T, we need two more ghost variables gwitness
and gfound. The variable gwitness witnesses the precise element in the list that holds the key k, and
gfound checks whether the location gwitness belongs to the list pointed to by x.
The above specification is realizable. For example, filling the first hole ‘⟨⟨ ?? 1 ⟩⟩’ with “b := F”

and ‘⟨⟨ ?? 2 ⟩⟩’ with “if key(x) = k then b := T” satisfies the assertion. Furthermore, this program is

indeed coherent [Mathur et al. 2019] and hence our decision procedure will answer in the affirmative
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and synthesize code for the holes. In fact, our synthesis procedure will synthesize a representation

for all possible ways to fill these holes (hence including the solution above) and it is thus possible

to enumerate and pick specific solutions. As before, it is clear to see how to formulate a grammar

that matches this setup. As noted, we must stipulate that the holes do not use the ghost variables.

Example 4. Consider the same partial program as in Example 3, but let us add an assertion at

the end: “assert (b = T ⇒ z = gwitness)”, where z is another program variable. We are then

demanding that the synthesized code also find a node z that is equal to the ghost node gwitness,
guessed nondeterministically at the beginning of the program, whose key is k. This specification is

unrealizable — for a list with two nodes having key k, no matter what the program picks, we can

always set gwitness to the other node with key k in the list to violate the assertion. Our decision

procedure will report in the negative for this problem.

Example 5 (Input/output Examples).
We can encode input/output examples in our setting by adding

at the beginning of the program grammar a sequence of as-

signments and assumptions that define certain ‘models’. For

example, the sequence of statements on the right defines a

linked list of two elements with different keys. We can also

define, similarly, using special variables, the answer that we

expect in the case of each model.

assume(x1 , NIL);
x2 := next(x1);
assume(x2 , NIL);
assume(next(x2) = NIL);
k1 := key(x1);
k2 := key(x2);
assume(k1 , k2)

Then the grammar will require that one of these models be nondeterministically chosen (using a

fresh variable that can hold any initial value, and therefore acts as a nondeterministic choice) such

that when the program (after the hole is filled) is executed on the chosen model, the variable(s)

returned will contain the expected answer. This has the effect of requiring a solution to the hole

that generalizes across models. For want of space we provide a detailed example in Appendix A.1.

Observe that our method in this paper builds an automaton that accepts all possible programs

that are correct solutions, and thus this method of encoding input-output examples could be used

to extract the smallest program — which is usually a good proxy for programs that generalize well.

3 PRELIMINARIES
The goal of this section is to formally define the grammar-restricted program synthesis problem

for coherent uninterpreted programs. We first define a simple target imperative language of

uninterpreted programs, giving its semantics and defining a notion of program correctness. Next,

we consider the subtleties involved in defining an interesting and nontrivial synthesis problem.

This leads us to our definition of grammar-restricted uninterpreted program synthesis or simply

uninterpreted program synthesis, in which the user gives a grammar from which a correct program

needs to be synthesized.

3.1 Uninterpreted Programs: Syntax and Semantics
We consider simple imperative programs that operate over arbitrary data models that provide

interpretations for the constants, functions, and relations the program uses; henceforth such

programs are called uninterpreted programs.

3.1.1 Syntax. Our programs include assignment statements, while loops, if-then-else conditionals,

assume statements, and assertions. Let us fix a first order signature Σ = (C,F ,R) where C, F , and

R are, respectively, sets of constant, function, and relation symbols. LetV be a finite set of program

variables. The set of programs over V is inductively defined using the following grammar. Below,
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c,d ∈ C, f ∈ F , R ∈ R (with f and R of the appropriate arities) and x ,y, z1, . . . , zr ∈ V .

⟨stmt⟩V ::= skip | x := c | x := y | x := f (z1, . . . , zr ) | assume
(
⟨cond⟩V

)
| assert

(
⟨cond⟩V

)
| ⟨stmt⟩V ; ⟨stmt⟩V | if

(
⟨cond⟩V

)
then ⟨stmt⟩V else ⟨stmt⟩V | while

(
⟨cond⟩V

)
⟨stmt⟩V

⟨cond⟩V ::=x = y | x = c | c = d | R(z1, . . . , zr ) | ⟨cond⟩V ∨ ⟨cond⟩V | ¬⟨cond⟩V

Arbitrary Boolean combinations in ⟨cond⟩V can be modeled using the if−then−else construct

(with nesting). Further, constants can be modeled as variables which are never reassigned, and

relations can be modeled using functions along with special constants ⊤ and ⊥. Therefore we

will assume that all conditionals are atomic equality/disequality predicates, and that there are

no constants or relation symbols in programs. Similarly, all assertions can be rewritten using

if−then−else and assertions of the form assert(false). Therefore, we assume all assertions are

assert(false). When the set of variables V is clear from context, we will also omit the subscript V
from ⟨stmt⟩V and ⟨cond⟩V .

3.1.2 Program Executions. An execution over V is a word over the alphabet

ΠV = {“x := y”, “x := f (z)”, “assume(x = y)”, “assume(x , y)”, “assert(false)” | x ,y, z ∈ V , f ∈ F }.

The set of complete executions for a program p overV denoted Exec(p) is a regular language defined
inductively as follows. Here c is of the form “x = y” or “x , y”. We assume that ¬(x = y) is
synonymous with x , y and ¬(x , y) is synonymous with x = y.

Exec(skip) = ϵ Exec(x := y) = “x := y”

Exec(x := f (z)) = “x := f (z)” Exec(assume(c)) = “assume(c)”
Exec(assert(c)) = “assume(¬c)” · “assert(false)” + Exec(skip)
Exec(if c then s1 else s2 ) = “assume(c)” · Exec(s1) + “assume(¬c)” · Exec(s2)
Exec(p1;p2) = Exec(p1) · Exec(p2)

Exec(while c {p }) =
(
“assume(c)” · Exec(p )

)∗
· “assume(¬c)”

The set PExec(p) of partial executions is the set of prefixes of complete executions in Exec(p).

3.1.3 Semantics. The semantics of executions is given in terms of data models. A data model

M = (U ,I) is a first order structure over Σ that is comprised of a universeU and the interpretation

function I that maps every k-ary symbol f ∈ F to a k-ary function overU and also gives initial

values to the variables in V . The semantics of an execution π over a data modelM is given by a

configuration σ (π ,M) : V → U that maps every variable to a value in the universe U of M at the

end of π . This notion is straightforward and a formal definition is skipped (see [Mathur et al. 2019]

for details). Intuitively, the program’s variables evolve according to the function interpretations

given by the data model, equality being interpreted in the natural way to evolve conditionals, and

if-then-else and while constructs evaluated in the natural way. Assume statements halt the program

silently if the condition is not true, while assert statements cause an error/exception when the

evaluated condition is not true. Note that a program on a particular data model has at most one

execution.

An execution π is feasible in a data modelM if every assumption is true at its point of occurrence.

More formally, an execution π is feasible in a datamodelM if for every prefix ρ = ρ ′·assume(x ∼ y)
of π (where ∼∈ {=,,}), we have σ (ρ ′,M)(x) ∼ σ (ρ ′,M)(y). Execution π is said to be correct in
a data modelM if for every prefix of π of the form ρ = ρ ′ · assert(false), we have that ρ ′ is not
feasible, or infeasible inM. Finally, a program p is said to be correct if for all data modelsM and

partial executions π ∈ PExec(p), π is correct inM.
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3.2 The Program Synthesis Problem
We are now ready to define the program synthesis problem. Our approach will be to allow users to

specify a grammar and ask for a program to be synthesized that conforms to the grammar. However,

it remains to define the specifications that programs must satisfy.

We allow the user to express specifications using assertions in the program to be synthesized.

More precisely, we allow the user to express in the grammar where assertions (of equality and

disequality of variables) occur— synthesized programs must have such assertions present and

ensure they hold along every run and on every data model. Such assertions can be used at the

end of programs to ensure postconditions, and can also be used intermittently along executions to

ensure properties. As we will show, the user can also insert ghost code into the grammars, which,

augmented with assertions, can express a wide variety of properties.

Some care is necessary to avoid defining trivial synthesis problems. Consider a problem in which

the task is to fill a hole in a template program such that an assertion after the hole is satisfied. A

correct but uninteresting solution would be to fill the hole with a non-terminating while loop. Our

program grammar restriction allows users to constrain the grammar syntactically in order to rule

out trivial solutions like the one above. The grammars also enable us to use assertions to ensure

such trivial solutions are incorrect.

3.2.1 Grammar Schema and Input Grammar. In our program synthesis problem formulation, we

allow users to define a grammar (called the input grammar) to which synthesized programs must

conform. We now describe the schema by which we define the set of allowable grammars.

The input grammar can be a context-free grammar, but our schemawill disallow arbitrary context-

free grammars. The input grammars allow the usual context-free

S → if (x = y) then u := v ; T u := v ;

T → else
T → u := v ; T u := v ;

power required to describe proper nesting/bracketing

of program expressions, but disallow other uses of the

context-free power, such as counting statements. For ex-
ample, we would disallow the grammar on the right. This

grammar has two non-terminals S (also the start symbol)

and T , and generates programs with a conditional that has the same number of assignments in the

if and else branches.
Intuitively, the grammar schema restricts the input grammar so that any nonterminal produces

well-formed programs. The grammar schema is a set of production rules, and the user can form the

input grammar using any finite subset of the grammar schema. The schema is quite natural — it

allows atomic statements, and allows combining sets of well-formed programs (corresponding to

nonterminals) using sequential composition, conditional composition, and iteration.

We assume a countably infinite set PN of nonterminals and a countably infinite set PV of program

variables. The grammar schema S over PN and PV is the infinite collection of production rules:

S =


“P → x := y”, “P → x := f (z)”, “P → assume(x ∼ y)”,
“P → assert(false)”, “P → skip”, “P → while (x ∼ y) P1”,
“P → if (x ∼ y) then P1 else P2”, “P → P1 ; P2 ; · · · ; Pk ”

�������
P , P1, P2, . . . , Pk ∈ PN
x ,y, z ∈ PV
∼ ∈ {=,,},k ≥ 2


An input program grammar G is any finite subset of the schema S. Such a subset implicitly iden-

tifies a finite set of program variables (those variables occurring in G), a finite set of nonterminals

(those nonterminals occurring in G), and hence defines a context-free grammar. Hence an input

program grammar defines a class of programs, denoted L(G).

Note that grammar rules where nonterminals on the right hand side are replaced by a sequence

of nonterminals separated by “;”, such as P → if (x ∼ y) then P1; P2; P3; P4 else P5 are effectively
also allowed, as they can be transformed to rules in S using extra nonterminals and rules. This
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is similar to conversion to Chomsky Normal Form [Hopcroft et al. 2006] — for example, we can

replace the above rule by the rules “P → if (x ∼ y) thenQ else P5”, “Q → P1;Q1”, “Q1 → P2;Q2”

and “Q2 → P3; P4”.

Definition 1 (Uninterpreted Program Realizability and Synthesis). Given an input grammar G

defined above, the program realizability problem is to determine whether there is an uninterpreted

program p ∈ L(G) such that p is correct. The program synthesis problem is to determine the above,

and further, if realizable, synthesize a correct program p ∈ L(G).

Example 6. Let us consider the program with hole from Example 1 (Figure 1, left) and illustrate

how we can model the synthesis problem in our framework. The grammar for this problem will be

the following

S → P1; P2; P ⟨⟨ ?? ⟩⟩ ; P3 P1 → “cipher := enc(secret, key)”
P2 → “assume(secret = dec(cipher, key))” P3 → “assert(z = secret)”
P ⟨⟨ ?? ⟩⟩ → ⟨stmt⟩V⟨⟨ ?? ⟩⟩

Here, V⟨⟨ ?? ⟩⟩ = {cipher, y
1
, . . . , yn} and the grammar ⟨stmt⟩V⟨⟨ ?? ⟩⟩

is the one from Section 3.1.1.

Any program that this grammar generates indeed matches the template from Figure 1 (left) and any

such program is correct if it satisfies the last assertion for all models, i.e., all interpretations of the

function symbols enc and dec and for all initial values of the variablesV = V⟨⟨ ?? ⟩⟩∪{key, secret}.

4 UNDECIDABILITY OF UNINTERPRETED PROGRAM SYNTHESIS
First, we observe that synthesis of uninterpreted programs is undecidable in general (Theorem 1).

This is not surprising given that the verification problem of uninterpreted programs is already

undecidable [Mathur et al. 2019; Müller-Olm et al. 2005].

Theorem 1. The uninterpreted program synthesis problem is undecidable.

Proof. (Sketch.) This can be proved using a straightforward reduction from the verification

problem of uninterpreted programs which is known to be undecidable [Mathur et al. 2019; Müller-

Olm et al. 2005]. Given an uninterpreted program p as an input to the verification problem, we

construct a grammar Gp such that L(Gp ) = {p}, where p is the input program to the verification

problem. It is easy to see that the program verifies iff the reduced problem is realizable. □

Given the above result and that verification of loop-free programs is decidable (equivalent to

checking satisfiability of quantifier free theory of equality and uninterpreted functions, or EUF), it is

natural to ask whether the program synthesis of loop-free uninterpreted programs is decidable. The

first signs that this problem may be undecidable were indicated in a result by [Caulfield et al. 2015],

where it was shown that the problem of synthesizing quantifier-free formulae over the theory of

equality with uninterpreted functions (EUF) together with an additional ITE (if-then-else) construct,
is undecidable. Observe that a quantifier-free EUF formula corresponds to an uninterpreted program

without loops. However, since there might not be any bound on the size of the candidate formulae,

the programs that correspond to these formulae may require an unbounded number of variables.

We first show that program synthesis (over a fixed set of variables) remains undecidable even

when the target programs do not contain loops. In the following, Sloop-free is the grammar schema

for grammars that generate loop-free programs:

Sloop-free = S \ {“P → while (x ∼ y) P1” | P , P1 ∈ PN , x ,y ∈ PV ,∼ ∈ {=,,}}

Theorem 2. The uninterpreted program synthesis problem is undecidable for the schema Sloop-free.
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In fact, the above result is a corollary of the following result that we prove. We show that the

problem remains undecidable even when the input grammar is constrained to generate loop-free

and conditional-free programs, or straight-line programs. Formally, let SSLP be the following schema

over PN and PV .

Sloop-free \ {“P → if(x ∼ y) then P1 else P2” | P , P1, P2 ∈ PN , x ,y ∈ PV ,∼ ∈ {=,,}}

Theorem 3. The uninterpreted program synthesis problem is undecidable for the schema SSLP.

The proof of the above result constructs a reduction from Post’s Correspondence Problem [Post

1946] and is presented in Appendix B.

In summary, program synthesis of even straight-line uninterpreted programs, which do not

have conditionals nor iteration, is already undecidable. The notion of coherence of uninterpreted
programs was shown to lead to decidable verification in [Mathur et al. 2019]. We show in the next

section that restricting to coherent programs yields decidable program synthesis, even for programs

with conditionals and iteration.

5 SYNTHESIS OF COHERENT UNINTERPRETED PROGRAMS
In this section, we discuss the main result of the paper — program synthesis for uninterpreted

coherent programs [Mathur et al. 2019] is decidable. Coherence is a restriction that allows an

automata-theoretic decision procedure for verifying uninterpreted programs. The restrictions

are technical and intuitively allow maintaining congruence closure in a streaming fashion when

reading a coherent execution. We will recall the definition of coherent executions and programs

in Section 5.1 and also briefly recall the algorithm for verification of such programs. We next move

on to the program synthesis problem. Our synthesis procedure works by constructing a two-way

alternating tree automaton. We briefly discuss this class of tree automata in Section 5.2 and recall

some standard known results. In Sections 5.3-5.5 we describe the details of the synthesis algorithm,

argue its correctness, and discuss its complexity (2EXPTIME upper bound).

5.1 Coherent Executions and Programs
The notion of coherence for an execution π is defined with respect to the terms it computes.

Intuitively, at the beginning of an execution, each variable x ∈ V stores some constant term

x̂ ∈ C. As the execution proceeds, new terms are computed and stored in variables. Let TermsΣ
be the set of all ground terms defined using the constants and functions in Σ. Formally, the term

corresponding to a variable x ∈ V at the end of an execution π ∈ Π∗
V , denoted T(π ,x) ∈ TermsΣ, is

inductively defined as follows. We assume that the set of constants C includes a designated set of

initial constants V̂ = {x̂ | x ∈ V } ⊆ C.

T(ε,x) = x̂ x ∈ V
T(π ·“x := y”,x) = T(π ,y) x ,y ∈ V

T(π ·“x := f (z1, . . . , zr )”,x) = f (T(π , z1), . . . , T(π , zr )) x , z1, . . . , zr ∈ V
T(π ·a,x) = T(π ,x) otherwise

We will use T(π ) to denote the set {T(π ′,x) | x ∈ V ,π ′
is a prefix of π }.

A related notion is the set of term equality assumptions that an execution accumulates, which we

formalize as α : π → P(TermsΣ × TermsΣ), and define inductively as α(ε) = �, α(π ·“assume(x =
y)”) = α(π ) ∪ {(T(π ,x), T(π ,y))}, and α(π ·a) = α(π ) otherwise.

For a set of term equalitiesA ⊆ TermsΣ×TermsΣ, and two ground terms t1, t2 ∈ TermsΣ, we say t1
and t2 are equivalent moduloA, denoted t1 �A t2, ifA |= t1 = t2. For a set of terms S ⊆ TermsΣ, and a
term t ∈ TermsΣ we write t ∈A S if there is a term t ′ ∈ S such that t �A t ′. For terms t , s ∈ TermsΣ,
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we say s is a superterm modulo A of t , denoted t ≼A s if there are terms t ′, s ′ ∈ TermsΣ such that

t �A t ′, s �A s ′ and s ′ is a superterm of t ′.
With the above notation, let us now recall the notion of coherence.

Definition 2 (Coherent Executions and Programs [Mathur et al. 2019]). An execution π ∈ Π∗
V is

said to be coherent if it satisfies the following two conditions.

Memoizing. Let ρ = ρ ′ · “x := f (y)” be a prefix of π . If tx = T(ρ,x) ∈α (ρ′) T(ρ ′), then there is a

variable z ∈ V such that tx �α (ρ′) tz , where tz = T(ρ ′, z).
Early Assumes. Let ρ = ρ ′ · “assume(x = y)” be a prefix of π , tx = T(ρ ′,x) and ty = T(ρ ′,y).

If there is a term s ∈ T(ρ ′) such that either tx ≼α (ρ′) s or ty ≼α (ρ′) s , then there is a variable

z ∈ V such that s �α (ρ′) tz , where tz = T(ρ ′, z).
A program p is coherent if every execution π ∈ Exec(p) is coherent.

The following theorems due to [Mathur et al. 2019] establish the decidability of verifying coherent

programs and also of checking if a program is coherent.

Theorem 4 ([Mathur et al. 2019]). The verification problem for coherent programs, i.e., checking if a
given uninterpreted coherent program p is correct, is decidable.

Theorem 5 ([Mathur et al. 2019]). The problem of checking coherence, i.e., checking if a given
uninterpreted program p is coherent, is decidable.

Mathur et. al., in fact, show that the decision procedures for both the above problems are

automata-theoretic. They construct deterministic word automataA
correct

andA
coherent

2
that accept

languages Lcorrect and Lcoherent, respectively. The language Lcorrect contains all coherent executions
that are correct and contain no coherent execution that is incorrect. The language Lcoherent is the
set of all coherent executions. The size of both these automata is O(2poly( |V |)). We remark that one

can therefore construct a deterministic word automaton Acc-exec whose language is the set of all

executions that are both coherent and correct (i.e, L(Acc-exec) = Lcorrect ∩ Lcoherent) and whose size

|Acc-exec | is again O(2
poly( |V |)). Acc-exec will have a unique rejecting state qreject which is absorbing,

and its language is prefix closed.

5.2 Non-deterministic Top-Down and Two-Way Alternating Tree Automata
Our synthesis procedure is tree-automata theoretic.We consider tree representations of programs, or

program trees. The synthesis problem is thus to check if there is a program tree whose corresponding
program is coherent, correct and belongs to the input grammarG. A formal correspondence between

trees and programs is discussed in Section 5.3. The synthesis procedure then works as follows.

We first construct a top-down tree automaton A
G
that accepts the set of trees corresponding

to the programs generated by the input grammar G. We then construct another tree automaton

Acc, which accepts all trees that correspond to programs that are coherent as well as correct. Acc
is a two-way alternating tree automaton that examines all executions of an input program tree,

checking if each of them is both correct and coherent by simulating them on the word automaton

Acc-exec (described in Section 5.1). Recall that Acc-exec accepts an execution if and only if it is

correct and coherent. In order to simulate longer and longer executions arising from constructs like

while-loops, the automaton traverses the input tree and performs multiple passes over subtrees,

visiting the internal nodes of the tree many times. This crucially relies on the “two-way”ness of the

automaton. We then translate the two-way alternating tree automaton to an equivalent (one-way)

2
We will use the superscript ‘ ’ for word automata that accept words or strings over some word alphabet. This is to clearly

distinguish them from tree automata, or acceptors of trees, which will be the subject of later parts of the paper. We will use

the symbol ‘ ’ as a superscript for such automata.
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non-deterministic top down tree automaton, and finally check if it intersects with A
G
. In the

following, we recall the formal descriptions of these automata for readers that might be unfamiliar

with them. Our presentation closely follows the presentations in [Madhusudan 2011; Vardi 1998].

5.2.1 Trees. We will consider binary trees here. Let us fix a tree alphabet Γ =
⋃

2

i=0 Γi , which is

a finite set of symbols annotated with arities — symbols in Γi have arity i and Γi ∩ Γj = � when

i , j. Formally, a finite tree T over Γ is a pair (S,γ ), where S ⊆ {L,R}∗ is a finite set of nodes in
the tree; S is prefix closed, ϵ ∈ S and for every string ρ·R ∈ S , we also have ρ·L ∈ S . The labeling
function γ : S → Γ maps each leaf node n ∈ S (i.e., there is no node n′ which is a suffix of n), to Γ0,
each node with exactly one child (i.e., n·L ∈ S but n·R < S) to Γ1 and the remaining nodes to Γ2. The
node corresponding to ϵ is called the root node. The left and right children of a node n ∈ S are the

nodes n1 = n·L and n2 = n·R if they exist, in which case n is the parent of n1 and n2. For a node n
different from the root ϵ , we will use n·U to denote the parent node of n. Readers must observe

that the notion of binary trees can easily be extended to trees of arbitrary arity.

5.2.2 Non-Deterministic Top Down Tree Automata. A non-deterministic finite top-down tree au-

tomaton over a tree alphabet Γ =
⋃

2

i=0 Γi is a tuple A = (Q, I ,δ0,δ1,δ2), where Q is a a finite set of

states and I ⊆ Q is the set of initial states, δ0 ⊆ Q ×Γ0, δ1 : Q ×Γ1 → 2
Q
and δ2 : Q ×Γ2 → 2

Q×Q
. For

a finite treeT = (S,γ ), the run of A onT is a tree ρ = (S, µ) labeled with states of A (i.e., µ : S → Q)

such that µ(ϵ) ∈ I and for every non-leaf node n ∈ S , we have µ(n·L) ∈ δ1(µ(n),γ (n)) if n has only

one child, and (µ(n·L), µ(n·R)) ∈ δ2(µ(n),γ (n)) otherwise. Further, ρ is accepting if for all leaf nodes

n ∈ S , we have (µ(n),γ (n)) ∈ δ0 and T is accepted by A if there is an accepting run of A on T . The
language L(A) of the top down tree automaton is the set of all trees it accepts.

We note that checking if the language of a non-deterministic top-down tree automaton is empty is

decidable in linear time in the size of the automaton. Further, given two tree automataA1 andA2 over

the same tree alphabet, we can construct another tree automaton A such that L(A) = L(A1) ∩ L(A2),

in timeO(|A1 | · |A2 |). We refer the reader to [Comon et al. 2007] for details of these standard results.

5.2.3 Two Way Alternating Tree Automata. We will denote by B+(U ) the set of all positive Boolean

formulae over a setU . That is, B+(U ) is the smallest set such that {true, false} ∪U ⊆ B+(U ) and

for every φ1,φ2 ∈ B+(U ), we have {φ1 ∨ φ2,φ1 ∧ φ2} ⊆ B+(U ). For a (possibly empty) setU ′ ⊆ U
and a formula φ ∈ B+(U ), we sayU ′ |= φ if φ evaluates to true by setting each of the elements in

U ′
to true and the remaining elements ofU to false.

A two-way tree automaton is a tuple A = (Q, I ,δ0,δ1,δ2) where Q is a finite set of states and

I ⊆ Q is the set of initial states. δ0,δ1 and δ2 are respectively the transition functions for the leaf

nodes, nodes with one child and nodes with two children. That is, δ0 : Q ×{D}×Γ0 → B+(Q ×{U }),

δ1 : Q × {D,UL} × Γ1 → B+(Q × {U ,L}), and δ2 : Q × {D,UL,UR } × Γ2 → B+(Q × {U ,L,R}).
A run of a two-way alternating tree automaton A on a finite tree T = (S,γ ) is a (possibly in-

finite) directed rooted tree Trun = (Srun,γrun) (nodes in the run tree are allowed to have more

than 2 children), such that γrun : Srun → S × Q × {D,UL,UR } and the following conditions

hold. (a) The root r of the tree is such that γrun(r ) = (ϵ,q,D), where q ∈ I . (b) For every

node v with γrun(v) = (n,q,m) and for every child node v ′
of v , with γrun(v

′) = (n′,q′,m′), if

m′ = D, then n′ = n·L or n′ = n·R, if m′ = UL , then n = n′·L, and if m′ = UR , then n = n′·R.
(c) For every node v with γrun(v) = (n,q,m) in Srun, the set Cv of the children of v is such that

{(q′,d ′) | ∃v ′ ∈ Cv · γrun(v
′) = (n′,q′,m′),d ′ = dir(n,n′)} |= δi (q,m,γ (n)), where dir(n,n

′) is L, R
or U if n′ is respectively the left child, right child or the parent of n in the input tree T . A two-way

alternating tree automaton accepts a tree T if there is any run of the automaton on T .
A two-way alternating tree automaton can be converted to an equivalent top-down tree automa-

ton with at most exponential blowup:
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Lemma 6 ([Kupferman and Vardi 2000; Vardi 1998]). Given a two-way alternating tree automaton

A, one can construct a non-deterministic top-down tree automaton A′
of size O(2poly(|A|)) in time

O(2poly(|A|)) such that L(A) = L(A′).

Here, |A| denotes the size of the description of the automaton A. Appendix C.2 presents a

construction for the above result adapted to the simpler setting of our paper.

5.3 Top Down Tree Automata as Acceptors of Program Trees
5.3.1 Program Trees and Associated Programs. Every program can be interpreted as a tree where

the leaves of the tree are basic statements like “x := y” and the internal nodes are labeled with

constructs like while or seq (the sequencing construct alias for ;) and have sub-programs/sub-

expressions as children. Let us formalize this as follows. We fix a tree alphabet ΓV = ΓV ,0∪ΓV ,1∪ΓV ,2,

where

• ΓV ,0 = {“skip”, “x :=y”, “x :=f (z)”, “assume(x=y)”, “assume(x,y)”, “assert(false)” | x ,y, z are in V }

• ΓV ,1 = {“root”, “while(x=y)”, “while(x,y)” | x ,y ∈ V },

• ΓV ,2 = {“ite(x=y)”, “ite(x,y)”, “seq” | x ,y ∈ V }

When the set of variables V is clear from the context, we will omit the subscript and simply use

Γ, Γ0, Γ1 and Γ2.
A program tree is a tree over the alphabet ΓV where (a) the root is labeled root, and (b) all other

nodes are labeled from symbols in Γ0 ∪ Γ1 ∪ Γ2 \ {“root”} depending upon the number of children

they have. Internal nodes in a program tree labeled with ite(·)
correspond to if−then−else constructs, nodes labeled with

while(·) correspond towhile constructs, and nodes labeled with
seq correspond to the sequencing construct ‘;’. An example pro-

gram tree is shown on the right. It is easy to see that the set of

all program trees is a regular language and that we can construct

a non-deterministic tree automaton of size polynomial in |V |

which accepts this set.

root

seq

found := F while(x , NIL)

seq

x := n(x)ite(x = y)

found := T skip

To every node n in the program tree T = (S,γ ), one can associate a program, denoted Prog(n) ∈
⟨stmt⟩V , defined inductively on the structure of the tree as follows

Prog(n) =



γ (n) if n is a leaf node

if(x ∼ y) then Prog(n·L) elseProg(n·R) if γ (n) = “ite(x ∼ y)”,x ,y ∈ V ,∼ ∈ {=,,}

while(x ∼ y) Prog(n·L) if γ (n) = “while(x ∼ y)”,x ,y ∈ V ,∼ ∈ {=,,}

Prog(n·L) ; Prog(n·R) if γ (n) = “seq”
Prog(n·L) if γ (n) = “root”

The program Prog(T ) associated with a program tree T is the program Prog(n), where n is the root

node of T . It is easy to see that for every program there exists at least one program tree (though

not unique, since there can be different parses) that represents it.

5.3.2 Grammar to Tree Automaton. The next task is to represent the set of programs generated by

an input grammar G as a regular set of program trees, accepted by a non-deterministic top-down

tree automaton A
G
. The construction of A

G
mimics the standard construction for tree automata

that accept parse trees of context free grammars. The details of this construction are presented

in Appendix C.3.

The following lemma states that the language of the A
G
accurately represents programs from G.
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Lemma 7. Let G be a grammar conforming to the schema S and let A
G
be the tree automaton

constructed above. Then, we have L(G) = {Prog(T ) | T ∈ L(A
G
)}. Further,A

G
can be constructed

in time O(|G|) and has size O(|G|). □

5.4 Two Way Alternating Tree Automaton for Simulating Executions
We describe now the construction of two-way alternating automata that captures the crux of our

our synthesis procedure, and perhaps the most important technical result of the paper.

We construct a two-way alternating automatonAcc that accepts precisely the set of all annotated

trees that correspond to correct and coherent programs. This will be achieved by ensuring that

a program tree is accepted by Acc if and only if all executions of the program it represents are

accepted by the word automaton Acc-exec (Section 5.1). The basic idea behind the tree automaton

Acc is as follows. Given a program tree T as input, the automaton Acc traverses this tree and

explores all the executions of the associated program pT = Prog(T ). For each execution σ of pT ,
Acc keeps track of the state that the word automaton Acc-exec would reach after reading σ . An
accepting run of the tree automaton never visits the rejecting state of the word automaton Acc-exec.

Let us now present the formal description of the two-way alternating tree automaton Acc =

(Qcc, I cc,δ cc
0
,δ cc

1
,δ cc

2
) that works over the alphabet ΓV described in Section 5.3.

States. The set of states and the initial states of the two way tree automaton Acc coincide with

that of the word automatonAcc-exec. That is,Q
cc = Qcc-exec

and I cc = {qcc-exec
0

}, where qcc-exec
0

is the

unique starting state of Acc-exec.

Transitions. We first give some intuition on how the transitions are designed.

Let us consider the case when the automaton’s control is in state q reading an internal input

tree node n with one child and which is labeled with a = while(x = y). Letm be the last move

of the automaton at this point. Then, in the next step, the automaton simultaneously performs

two transitions corresponding to the two possibilities—entering the loop after assuming the guard

‘x = y’ to be true, or exiting the loop with the guard being false. In the first transition, the

automaton moves to the (left) child n·L, and the state of the automaton changes to q′
1
where

q′
1
= δ cc-exec(q, “assume(x = y)”). In the second simultaneous transition, the automaton moves

to the parent node n·U (searching for the next statement to execute that is after the end of the

while-loop) and changes its state to q′
2
, where q′

2
= δ cc-exec(q, “assume(x , y)”). We encode these

two simultaneous possibilites as a conjunctive transition of the two-way alternating automaton.

That is, δ cc
1
(q,m,a) =

(
(q′

1
,L) ∧ (q′

2
,U )

)
.

For every i,m,a, we have δi (qreject,m,a) = false, where qreject is the absorbing rejecting state
of Acc-exec. Below we give the formal description of the transitions from all other states q , qreject.
All transitions δi (q,m,a) not described below are false.

Transitions from the root. At the root node (labeled “root”), the automaton transitions in the

following way: δ cc
1
(q,m, root) =

{
(q,L) ifm = D

true otherwise

Recall that the run of a two-way automaton starts in the configuration wherem is set to D.
This means, in the very first step, the automaton moves to the child node (direction L). If the
automaton visits the root node in subsequent steps, then all transitions are enabled.

Transitions from leaf nodes. For a leaf with label a ∈ Γ0, and state q, the transition of the

automaton is δ cc
0
(q,D,a) = (q′,U ). That is, when the automaton visits a leaf node from

the parent, it moves to some state q′ and visits the parent node in the next step. The state

component q′ depends on q and a and is given by cases as follows.
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• Case a = “skip”. In this case, we have q′ = q, since a skip statement does not change the

state of the word automaton Acc-exec.

• Case a ∈ Γ0 \ {“skip”}. Here, q′ is given by the transition function of the word automaton

Acc-exec, i.e., q
′ = δ cc-exec(q,a).

Transitions on a “while” node. As described previously, when reading a node labeled with

“while(x ∼ y)”, where ∼∈ {=,,}, the automaton simulates both the possibility of entering

the loop body as well as the possibility of not entering the loop body (and assuming the loop

guard to be false). This corresponds to a conjunctive transition:

δ cc
1
(q,m, “while(x ∼ y)”) = (q′,L

)
∧
(
q′′,U )

where q′ = δ cc-exec(q, “assume(x ∼ y)”)

and q′′ = δ cc-exec(q, “assume(x ≁ y)”)

In the above, ≁ is = when ∼ is ,, and is , when ∼ is =. The first conjunct corresponds to

the program execution where the program enters the loop body (thereby assuming the loop

guard to be true), and where the control moves to the left child of the current node, which

corresponds to the sub-program of the body of the loop. The second conjunct corresponds to

the program execution where the loop guard evaluates to false and the automaton moves to

the parent of the current tree node. Notice that, in both the conjuncts above, the direction in

which the tree automaton moves does not depend upon the last move componentm of the

state. That is, no matter how the program arrives at a while block, the automaton simulates

both the possibilities of entering or exiting the body of the loop.

Transitions on a “ite” node. At a conditional node labeled “ite(x ∼ y)”, when coming down the
tree from the parent, the tree automaton Acc simulates both branches of the conditional:

δ cc
2
(q,D, “ite(x ∼ y)”) = (q′,L) ∧ (q′′,R)

where q′ = δ cc-exec(q, “assume(x ∼ y)”)
and q′′ = δ cc-exec(q, “assume(x ≁ y)”)

Here, q′ corresponds to the state corresponding to the “then” branch, obtained when the

conditional (x ∼ y) holds true, and the tree automaton moves control to the left child (body

of the then branch). The second conjunct above corresponds to entering the else branch,
simulating the word automaton on the negation of the condition and passing control to the

right child.

Let us now consider the case when the automaton moves up to an ite node from a child node.

In this case, the automaton moves to the parent node (marking the completion of executing

the then or the else block) and the state q remains unchanged :

δ cc
2
(q,m, “ite(x ∼ y)”) = (q,U ) m ∈ {UL,UR }

Transitions on a “seq” node. In this case, the automaton moves either to the left child, the right

child, or to the parent, depending on the “last move”. It does not change the state component.

More formally,

δ cc
2
(q,D, “seq”) =

(
q,L) δ cc

2
(q,UL, “seq”) =

(
q,R) δ cc

2
(q,UR , “seq”) =

(
q,U )

The above transitions match the semantics of the sequencing of two statements s1; s2. If the
automaton visits from the parent node, in the next step it should move to the left child to

simulate an execution corresponding to the first statement s1. When the program completes

execution of s1, it comes up from the left child and should start executing s2, which corresponds
to transitioning to the right child. Finally, when execution of s2 is complete, execution of the
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sequenced block s1; s2 is also complete, and thus the tree automaton Acc transitions to the

parent node, exiting the subtree.

The following lemma asserts the correctness of the automaton construction above, and states its

runtime complexity.

Lemma 8. Acc accepts the set of all program trees corresponding to correct coherent programs.

That is, {Prog(T ) | T ∈ L(Acc)} = {p ∈ ⟨stmt⟩V | p is a correct and coherent program}. Further,

the automaton can be constructed in O(2poly(|V|)) time and its size is |Acc | = O(2
poly(|V|)). □

5.5 The Overall Decision Algorithm and Synthesis Algorithm
So far we have described how to transform an input grammar G conforming to the grammar

schema S to an equivalent top-down non-deterministic tree automaton A
G
(Section 5.3). We then

described in Section 5.4 the construction of a two-way alternating tree automaton Acc that accepts

all trees corresponding to correct and coherent programs.

The rest of the synthesis algorithm proceeds as follows. We first construct a non-deterministic

top-down tree automaton Acc-top-down such that L(Acc-top-down) = L(Acc). Lemma 6 ensures that

Acc-top-down can be constructed in time O(22
poly(|V |)

), and that |Acc-top-down | = O(2
2
poly(|V |)

). Next, we

construct a top-down non-deterministic tree automaton A such that L(A ) = L(Acc-top-down) ∩

L(A
G
) = L(Acc) ∩ L(A

G
) in time O(|Acc-top-down | · |AG

|) = O(22
poly(|V |)

· |G|), such that |A | =

O(22
poly(|V |)

· |G|). Finally, checking the emptiness of A can be done in timeO(|A |) = O(22
poly(|V |)

·

|G|), and if it is non-empty, a program tree can be constructed.

This gives us the central upper bound result of the paper.

Theorem 9. The program synthesis problem for uninterpreted coherent programs is decidable in
2EXPTIME, and in particular, in time doubly exponential in the number of variables and linear in the
size of the input grammar. Furthermore, a tree automaton representing the set of all correct coherent
programs that conform to the grammar can be constructed in the same time. □

Note that our result not only shows decidability of the realizability and synthesis problems,

but also shows that the class of all correct coherent programs is tree-regular. The tree automaton

representing correct coherent programs can be further utilized for a variety of tasks— for instance,

to sample correct coherent programs to examine if they meet other requirements (or to verify them

using more concrete interpretations for functions/relations), etc. See [Wang et al. 2017] for work

in this vein in which they sample programs that satisfy some abstractions in order to eventually

synthesize correct programs (also see Section 10 on related work).

6 MATCHING LOWER BOUND FOR SYNTHESIZING COHERENT PROGRAMS
We now turn to proving that the synthesis algorithm from Section 5 is in fact optimal for the

problem of synthesizing coherent uninterpreted programs. We prove a 2EXPTIME lower bound for

uninterpreted program synthesis by reduction from the 2EXPTIME-hard word acceptance problem

of an alternating Turing machine (ATM) with exponential space bound [Chandra et al. 1981]. In

what follows, we give a high-level description of a polynomial-time reduction f that maps pairs

of ATMsM and inputsw to grammars G (conforming to schema S) such thatM acceptsw if and

only if there exists a correct (coherent) program p ∈ G. For a given pair (M,w) we will denote the

reduction grammar f (M,w) by GM,w . Full details of the reduction and a proof of its correctness

are deferred to the Appendix.
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Alternating Turing Machines
Let us first recall the formal definition of an alternating Turing machine. An ATM is a tuple

M = (Q,∆,δ ,q0,д), where Q is a finite set of states, q0 ∈ Q is the initial state, and ∆ is a finite set

of tape symbols. The machine transition relation has the form δ : (Q × ∆) → P(Q × ∆ × {L,R}).
Without loss of generality, we will assume that either there exist exactly two transitions (referred

to as 0 and 1) for any particular configuration or none at all. The function д : Q → {acc, rej,∧,∨}
maps states to their type (accepting, rejecting, universal, and existential). Whether or not an ATM

accepts its input starting from a particular configuration can be defined inductively. An ATM accepts

from any configuration whose state is of type acc , and it accepts from a configuration whose state is

of type ∨ (respectively ∧) if some (respectively each) transition leads to a configuration from which

it accepts. An ATM accepts a word if and only if it accepts it from the initial configuration, whose

state is q0. In what follows, we assume without loss of generality that existential configurations are

immediately followed by universal configurations under any transition (and vice versa) and that

the initial configuration is existential.

Overview of the Reduction
One can view the semantics of alternating Turing machines using two-player games. An ATM can

be imagined to transition according to the choices of an existential player (Eve) and a universal
player (Adam). Eve begins the game by picking a transition from the initial configuration, according

to the transition function of the machine. In turn, Adam responds by picking the next machine

transition. Intuitively, Eve is trying to drive the machine into an accepting state, no matter what

choice Adam makes on his turns. In this sense, the ATM accepts a word if Eve can choose a valid

machine transition, such that for all of Adam’s possible next transitions there exists another that
she can pick, and so on, such that the final configuration is accepting.

The idea of the reduction is to produce, given an ATM and its input, a grammar whose correct

programs encode winning strategies for Eve. A winning strategy for Eve can be viewed as a tree

where nodes are labeled by configurations. Nodes labeled by existential configurations have one

child (0 or 1, Eve’s choice) and universal configurations have two children (both 0 and 1, all possible
choices of Adam). For the tree to constitute a winning strategy for Eve, configurations at each node

in the tree should follow legally from their parents according to the ATM transition function, and

configurations at the leaves should be accepting. Our goal is to design a grammar whose programs

resemble such strategy trees, and whose correct programs resemble winning strategy trees. To

achieve this, we will insert assertions in the grammar to force programs to simulate only valid

machine transitions. The grammar will model Adam’s moves by reading an uninterpreted function.

Consequently, since correctness depends on satisfying assertions in all data models, a program will

be correct only if it encodes a strategy that is winning for all possible moves from Adam.

Several mechanisms are needed to model the game between Adam and Eve using a program

grammar. We need (a) a mechanism for simulating transitions (game moves) forM (b) a mechanism

for ensuring the moves follow the transition function (c) a mechanism to represent alternation

(rounds of the game) and (d) a mechanism to ensure that all possible sequences of moves under Eve’s

strategy eventually lead to accepting configurations. There are a number of challenges to overcome

here. Mechanism (a) requires some way to represent a configuration in an uninterpreted program.

The most obvious choice would be to use program variables, one for each of the exponentially
many tape cells that our space-bounded machine may use. We can rule this out immediately,

since this will result in a grammar of exponential size. Mechanism (b) is problematic for the same

reason as mechanism (a). Since we cannot represent a full machine tape in program variables, we

cannot check that every tape cell is updated according to a legal transition. Mechanism (c) can be
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accomplished by maintaining a program variable that indicates the current turn. Our solution to

the problem of mechanisms (a) and (b) will also be useful for mechanism (d).

We realize a mechanism for (a) by forcing the synthesizer (Eve) to produce the symbols of each

tape cell one at a time, inside a loop. Mechanism (b), which ensures that the synthesizer outputs

only correct tape symbols in each turn, is accomplished by nondeterministically designating a

particular tape cell to track. Intuitively, the grammar will track the evolution of only a single tape

cell, ensuring that the synthesizer always makes an appropriate choice for the next symbol of

that particular cell. It can refer to the distinguished cell using a polynomial number of program

variables that store the binary encoding of the cell index. The evolution of this cell can be verified

by keeping track of the symbols for a finite number of the cells surrounding it (one cell on either

side). The crux of the matter is that for different data models, the cell under inspection is different.

Thus, for the synthesizer to succeed, it must in fact choose correctly for all tape cells. Here, it is

important to note the role of incomplete information (as explained in Section 2). The grammar

ensures (syntactically) that the synthesizer cannot learn which cell is being tracked. Otherwise, it

could cheat by producing a bogus sequence of symbols that may be correct in isolation, but could

never have occurred for any sequence of valid moves. Finally, mechanism (d) ensures winningness

of the strategy in a manner similar to how transitions are verified: the grammar uses assertions to

require that any final move results in the production of tape contents that constitute a configuration

in an acc state. Further note that the grammar ensures all sequences of game play are finite by

excluding the use of arbitrary while loops, which may not terminate.

Another challenge involves the question of memory. In general, a winning strategy for the

synthesizer will need access to the entire history of a play. How can a grammar of polynomial size

represent a strategy of much larger size? The solution is to notice that the grammar can provide

for unbounded memory by judiciously branching at the important decision point (choosing how

to move). Intuitively, after a move is selected, but before it has been simulated and checked, the

program must branch on which move was chosen. This has the effect of allowing the synthesizer

to use the program counter for memory, since subsequent choices will be synthesized in distinct

sub-programs. A complete synthesized program will have a nested if−then−else structure whose
tree representation resembles the accepting computation tree for the ATM. The details of the

grammar and the proof of correctness are complex and are left to Appendix D.

Theorem 10. The grammar-restricted program synthesis problem is 2EXPTIME-hard.

7 SYNTHESIZING TRANSITION SYSTEMS
In this section, we investigate a variant of uninterpreted program synthesis in terms of transition
systems. Rather than synthesizing programs from grammars, we consider instead the synthesis

of transition systems whose executions must belong to a regular set. Our main result is that the

synthesis problem in this case is EXPTIME-complete, in contrast to grammar-restricted program

synthesis which is 2EXPTIME-complete.

7.1 Transition System Definition and Semantics
Let us fix a set of program variables V as before. We consider the following finite alphabet

ΣV = {“x := y”, “x := f (z)”, “assert(false)”, “check(x = y)” | x ,y, z ∈ V }

Let us define ΓV ⊆ ΣV to be the set of all elements of the form “check(x = y)”, where x ,y ∈ V . We

refer to the elements of ΓV as check letters.

A (deterministic) transition system TS over V is a tuple (Q,q0,H , λ,δ ), where Q is a finite set of

states, q0 ∈ Q is the initial state,H ⊆ Q is the set of halting states, λ : Q → ΣV is a labeling function
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such that for any q ∈ Q , if λ(q) = “assert(false)” then q ∈ H , and δ : (Q \ H ) → Q ∪ (Q ×Q) is a
transition function such that for any q ∈ Q \ H , δ (q) ∈ Q ×Q iff λ(q) ∈ ΓV.

Intuitively, a transition system is a finite-state system in which there is precisely one transition

from each non-halting state labeled by an assignment and precisely one ordered pair of states for

every non-halting state labeled by a check letter. States labeled by check letters represent points at
which the system checks whether a condition holds, moving to the first state of the transition pair if

yes and to the second state of the pair if no. A transition system can be viewed as an uninterpreted

program where we translate check letters as conditionals and model the transitions using goto
statements on a set of program labels (program labels being states). It is easy to see that finite

transition systems and programs of this kind correspond to each other.

We define the semantics of a transition system using the set of executions that it generates. An

execution π of a transition system TS = (Q,q0,H , λ,δ ) over variables V is a finite word a over the

induced execution alphabet ΠV from Section 3, with the following properties. If a = a0a1 . . . an
with n ≥ 0, then there exists a sequence of states q0,q1, . . .qn where the following hold:

• Let 0 ≤ i ≤ n, and suppose λ(qi ) is not a check letter. Then ai = λ(qi ) and, if i < n,
qi+1 = δ (qi ).

• Let 0 ≤ i ≤ n, and λ(qi ) = “check(x = y)”. Then either ai = “assume(x = y)” and (provided

i < n) qi+1 = δ (qi ) ⇂1, or ai = “assume(x , y)” and (provided i < n) qi+1 = δ (qi ) ⇂2.

In the above, we denote pair projection with ⇂, i.e., (t1, t2) ⇂ i = ti , where i ∈ {1, 2}. A complete
execution is an execution whose corresponding (unique) final state (qn above) is in H . For any

transition system TS , we denote the set of its executions by Exec(TS) and the set of its complete

executions by CompExec(TS). The notions of correctness and coherence for transition systems are

identical to their counterparts for programs, given in Section 3 and Section 5.1 respectively. The

crucial distinction between transition system and grammar-restricted program synthesis is that a

transition system may use additional memory (states) to record the history of an execution and

use it to determine which statements to execute later. This is a consequence of our specification

language for transition systems, which we discuss next.

7.2 The Transition System Synthesis Problem
In order to define a non-trivial synthesis problem for transition systems (we wish to avoid trivial

systems, e.g. one that never halts), we will allow the user to specify a transition system TS by

placing restrictions on its executions (both partial and complete) using two regular languages S
and R. We require that all executions of TS belong to the first language S (which is prefix-closed)

and that all complete executions belong to the second language R. A specification will be given as

two deterministic automata AS and AR over executions, where L(AS ) = S and L(AR ) = R. For a
transition system TS and specification automata AS and AR , whenever Exec(TS) ⊆ L(AS ) and

CompExec(TS) ⊆ L(AR ) we will say that TS satisfies its (syntactic) specification. Note that this

need not entail correctness of TS .

Definition 3 (Transition System Realizability and Synthesis Problems). Given a finite set of

program variables V and deterministic specification automata AS (prefix-closed) and AR over

the execution alphabet ΠV , decide if there is a correct coherent transition system TS over V that

satisfies the specification. Furthermore, produce one if it exists.

Since programs are readily translated to transition systems (of similar size), the transition system

synthesis problem seems, at first glance, to be a problem that ought to have similar complexity.

However, as we show, it is crucially different in that it allows the synthesized system to have
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complete information of past actions executed at any point. In fact, we will show in this section that

the transition system synthesis problem is EXPTIME-complete.

To see the difference between program and transition system synthesis, consider program

skeleton P from Example 2 in Section 2. The problem is to fill the hole in P with either y := T or
y := F. Observe that when P executes, there are two different executions that lead to the hole. In

grammar-restricted program synthesis, the hole must be filled by a sub-program that is executed

no matter how the hole is reached, and hence no such program exists. However, when we model

this problem in the transition system synthesis setting, the synthesizer will be able to produce

transitions that depend on how the hole is reached. Hence, it does not solve the problem of filling the

hole in P with uniform code. In this sense, in grammar-restricted program synthesis, programs have

incomplete information of the past. This property was crucially exploited in the 2EXPTIME program

synthesis lower bound proof (the grammar, with the help of the data model nondeterminism, hid

the identities of the TM cells being checked). No such incomplete information can be enforced by

regular execution specifications in transition system synthesis, and indeed the problem turns out

to be easier, as we show: transition system realizability and synthesis are EXPTIME-complete.

Upper Bound: Let the given finite set of program variables be V and let the specification be

given by the execution automata AS and AR over the alphabet ΠV . We build a non-deterministic

top-down tree automaton that accepts trees whose labels collectively encode the (potentially)

infinitely-many tree unfoldings of correct transition systems which satisfy the specification. The

nodes (states of the transition system) of input trees are labeled by ΣV , and any of such (non-leaf)

nodes labeled by a check letter has two children while nodes with other labels have a single child.

Let Acc-exec be the deterministic word automaton from Section 5.1 accepting all coherent and

correct executions over ΠV . The states of the tree automaton have three components that track

properties of executions across each branch of the input tree: the first component tracks the state

of AS , the second tracks the state of AR , and the third tracks the state of Acc-exec. When reading

any label other than a check letter, the tree automaton simulates all three component automata on

that label. When reading a letter of the form “check(x = y)”, it simulates the component automata

on “assume(x = y)” and “assume(x , y)”, propagating the resulting state triples to the left and

right children respectively. At any point, if AS reaches a rejecting state, then the input tree is

immediately rejected (by ensuring that such state triples transition to absorbing reject states).

An input tree is accepted if all leaves in a run are labeled by accepting states of each component

automaton. The size of this tree automaton is exponential in the number of program variables (from

the size of Acc-exec) and linear in the sizes of AS and AR . We can now check emptiness of the tree

automaton in time polynomial in its size. If nonempty, we can construct a finite transition system

(of size at most that of the tree automaton) whose tree unfoldings are precisely those accepted by

the automaton here described. This shows that the realizability problem is solvable in EXPTIME.
And furthermore, when realizable, a transition system of size exponential in the number of variables

and linear in the sizes of AS and AR can be constructed.

Lower Bound:We show that the realizability problem is EXPTIME-hard using a reduction from

the membership problem for alternating PSPACE Turing machines. The reduction has a similar

structure to that of the lower bound for grammar-restricted program synthesis, but is notably

simpler because we can encode Turing machine configurations using polynomially-many program

variables. The goal of the reduction is to design a specificationAR (and its prefix-closed counterpart

AS ) such that a correct transition system that satisfies it will witness an accepting computation

tree for the PSPACE Turing machine. Once again, we can think about this witness as encoding a

strategy for Eve, with Adam playing his moves by reading an uninterpreted function. Machine

configurations can be updated by inserting rules in the transitions for AS and AR that ensure each
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cell is updated correctly, and that any final configurations are accepting. We can then show that

there is a correct transition system with executions in L(AS ) and complete executions in L(AR ) if

and only if the alternating PSPACE TM accepts the input. This yields (proof gist in Section E):

Theorem 11. The transition system realizability problem is decidable in time exponential in the
number of program variables and polynomial in the size of the deterministic automata AS and AR .
Furthermore, the problem is EXPTIME-complete. When realizable, within the same time bounds we
can construct a correct coherent transition system whose executions are in L(AS ) and whose complete
executions are in L(AR ).

8 SYNTHESIZING BOOLEAN PROGRAMS
In this section, we briefly observe corollaries of our results when applied to the more restricted

problem of synthesizing Boolean programs.

In Boolean program synthesis, we interpret variables in programs over the Boolean domain

{T , F }, disallowing computations of uninterpreted functions and checking of uninterpreted relations.

Standard Boolean functions such as ∧, ∨, ¬,⇒, etc. are instead allowed, but note that these can

be modeled using if−then−else statements. We allow nondeterminism using a special assignment

b := * that assigns the b nondeterministically toT or F . As usual, a program is correct iff it satisfies

all its assertions.

Synthesis of Boolean programs can be easily modeled as uninterpreted program synthesis. We

have two special constants T and F . Each nondeterministic assignment is modeled by computing a

next function on successive nodes of a linked list, accessing a nondeterministic value by computing

key on the current node, and assuming equality of the result with eitherT or F . Since programs must

to be correct for all models, this indeed captures nondeterministic assignment. The 2EXPTIME upper
bound for Boolean program synthesis now follows from Theorem 9. Interestingly, the 2EXPTIME
lower bound from Section 6 can be adapted to prove Boolean program synthesis is 2EXPTIME-hard.
Note that the reduction uses a single uninterpreted function to model the binary universal choice

and the rest of the grammar manipulates variables that only ever contain two values, which can

hence be modeled with Booleans.

Theorem12. The realizability problem for grammar-restricted Boolean program synthesis is 2EXPTIME-
complete, and can be solved in time doubly-exponential in the number of variables and linear in the
size of the input grammar. □

The above shows that uninterpreted program synthesis is no more complex than Boolean

program synthesis, establishing decidability and complexity of a problem which has found wide

use in practice—for instance, the synthesis tool Sketch solves precisely this problem, as it models

integers using a small number of bits (usually 5) and allows grammars to restrict programs with

holes.

We can also show that the transition system synthesis problem studied in the previous section

can be adjusted to work over Boolean variables. Both the upper and lower bound proofs can be

adapted to show the problem is EXPTIME-complete. The definitions and results are the natural

analogs and we omit further details.

9 SYNTHESIZING RECURSIVE PROGRAMS
We now extend the positive result of Section 5 to synthesize coherent, recursive programs that meet

user specifications. The setup for the problem is very similar — given a grammar that identifies a

class of (now) recursive programs, the goal is to determine if there is a program in the class that is

coherent and correct. In order to do this, we first introduce the class of recursive programs and
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their semantics, along with important notions that will help us outline an algorithmic solution to

the synthesis problem.

9.1 Recursive Programs and their Semantics
To keep the presentation simple, we will impose some restrictions on the program syntax, none

of which limit the generality of our results. Let us fix the set of program variables to be V =
{v1,v2, . . .vr }, along with an ordering ⟨V ⟩ = v1,v2, . . .vr . The programs we consider will have

recursively defined methods, and we fix the names of such methods to belong to a finite setM . We

will assume thatm0 ∈ M denotes the “main” method that is invoked when the program is executed.

Without loss of generality, we will assume that the set of local variables for any methodm ∈ M
is V ; methods can easily ignore some variables if they use fewer variables. We will also assume

the set of formal parameters for every method is also V , called in the order ⟨V ⟩. None of these are

serious restrictions. Our methods will return multiple values back, which are assigned by the caller

to local variables. Therefore, for every methodm, we fix om to be the (ordered) output variables of
m; the variables in om will be among the variables in V . We require the output variables in om to

be distinct to avoid implicit aliasing. Recursive programs are now a sequence of method definitions,

wherein one can call other methods, assign values, use conditional branching and loops, along with

sequencing.

⟨pдm⟩M,V ::= m ⇒ om ⟨stmt⟩M,V | ⟨pдm⟩M,V ⟨pдm⟩M,V
⟨stmt⟩M,V ::= skip | x := y | x := f (z) | assume

(
⟨cond⟩V

)
| assert

(
⟨cond⟩V

)
| ⟨stmt⟩M,V ; ⟨stmt⟩M,V | if

(
⟨cond⟩V

)
then ⟨stmt⟩M,V else ⟨stmt⟩M,V

| while
(
⟨cond⟩V

)
⟨stmt⟩M,V | w :=m(⟨V ⟩)

⟨cond⟩V ::= x = y | x , y

Here x ,y, z,w belong to V , and the length of vector w must match the output om . A program is

nothing but a sequence of method definitions, and the main methodm0 is invoked first when the

program is run. The new statement in the grammar is w := m(⟨V ⟩) where a methodm is called

and when the call returns, the output values are assigned to the vector w of variables.

Different aspects associated with the semantics of such programs, like executions, terms, co-

herence, etc., are sketched informally below. Precise definitions for many of these concepts were

first presented in [Mathur et al. 2019], and for completeness are also given in Appendix F. Ex-

ecutions of recursive programs are sequences over the alphabet ΠV plus two other collections

of symbols — {“callm” | m ∈ M} which are events corresponding to method invocation, and

{“z:=return” | z in V } which are events corresponding to a return from a method invocation and

the assignment of outputs to local variables in the caller. The set of executions of a program can be

naturally defined and it forms a context-free language.

Given a data model that provides an interpretation to the constant and function symbols, every

partial execution naturally maps each program variable to a value in the universe of the data model;

in the interests of space we skip this definition. The notions of an execution being feasible in a

data model (i.e., all assume statements must hold when encountered) and a program being correct

(i.e., all executions of the form ρ · assert(false) are infeasible in all data models) can be extended

naturally to recursive programs.

Finally, the definition of coherent executions and programs can be extended to the recursive

case. To do this, we need to identify the syntactic term stored in a variable after a partial execution,

the set of syntactic terms computed during a completed execution, and the collection of equality

assumptions made during an execution. These can be naturally extended from the non-recursive

case using a call-by-value semantics. Based on these, coherence is defined in exactly the same

manner as in the non-recursive case — executions are coherent if they are memoizing and have
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early assumes, and programs are coherent if all their executions are coherent. Again, we skip the

formal definition to avoid repetition.

As in the non-recursive case, we will represent recursive programs as finite trees. Recall that a re-

cursive program is nothing but a sequence of method definitions. Therefore, our tree representation

of a program will be a binary tree with root labeled “root”, where the right-most path in the tree

will have labels of the form “m ⇒ om”, and the left child of such a node will be the tree representing

the body of the method definition ofm; since a method body is nothing but a program statement, we

could use a tree representation very similar to the one used for non-recursive programs. The formal

definition of such trees can be easily worked out, but is given in Appendix F for completeness.

We conclude this section by recalling the main observations from [Mathur et al. 2019] about

recursive programs — that the problems of determining if a recursive program is coherent, and of

determining if a coherent program is correct are decidable.

Theorem 13 ([Mathur et al. 2019]). Given a recursive program P , checking if P is coherent is decidable
in EXPTIME. Further, checking correctness of a coherent recursive program is decidable in EXPTIME.

The proof of Theorem 13 relies on the observation that there are visibly pushdown automata [Alur
andMadhusudan 2004] (with respect to the partition ofΠM,V into call alphabet {“callm” | m ∈ M},

return alphabet {“z:=return” | z in V }, and internal alphabet ΠV )
3 A

rcoh
and A

rcor
that accept

the set of all coherent executions, and the set of all coherent executions that are correct, respectively.

BothA
rcoh

andA
rcor

are of sizeO(2poly( |V |)). Since the set of all program executions is also a visibly

context-free language, decidability follows from taking appropriate automata intersections and

checking for emptiness. By taking automata cross-products, we can conclude there is a visibly

pushdown automaton A
rcc

of sizeO(2poly( |V |)) accepting the set of all recursive executions that are

both coherent and correct; as in the non-recursive case, we crucially exploit A
rcc

for synthesis.

9.2 Synthesizing Correct, Coherent Programs
The approach to synthesizing recursive programs is similar to the non-recursive case, though more

complicated. Once again, given a grammar G, the set of trees corresponding to programs generated

by G is regular; let A
G
be the tree automaton accepting this set of trees. The crux of the proof is to

show that there is a two-way alternating tree automaton A
rcc

that accepts exactly the collection

of all trees that correspond to recursive programs that are coherent and correct. The synthesis

algorithm then involves checking if there is a common tree accepted by both A
G
and A

rcc
, and

if so constructing such a tree. The latter problem is easily reduced to tree automata emptiness.

Therefore, in the rest of the section, we describe how to construct the automaton A
rcc
.

The construction of the automatonA
rcc

is similar to the construction ofAcc in the non-recursive

case. On an input tree t , A
rcc

will generate all executions of the program corresponding to t by
walking up and down t and checking if each one of them is coherent and correct by simulating

A
rcc
. The challenge is to account for recursive function calls and the fact that A

rcc
is a (visibly)

pushdown automaton rather than a simple finite automaton. Giving a precise formal description

of A
rcc

will be notationally cumbersome, and will obfuscate the ideas behind the construction.

Therefore, we only outline the informal ideas, and leave working out the precise details to the

reader.

Like in the non-recursive case, A
rcc

will simulate A
rcc

as each execution is generated. Since

A
rcc

does not change its stack, except on callm and z:=return, we can simulate A
rcc

on most

symbols by simply keeping track of the control state of A
rcc
. The interesting case to consider is

3
“Visible” here refers to the property that these automata push one symbol on their stack when they read callm, pop one

symbol on z := return, and leave the stack unchanged otherwise.
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that of method invocation. Suppose A
rcc

is at a leaf labeled “z:=m(⟨V ⟩)”. Let q be the control state

of A
rcc

after the execution thus far. Executing the statement z:=m(⟨V ⟩) gives a partial trace of the

form “callm” · ρ · “z:=return”, where ρ is an execution of methodm. Suppose A
rcc

on symbol

“callm” from state q goes to state q1 and pushes γ on the stack. Notice that no matter what ρ (the

execution of methodm) is, since A
rcc

is visibly pushdown, the stack at the end of ρ will be the

same as that at the begining. Therefore, A
rcc

will (nondeterministically) guess the control state q2
of A

rcc
at the end of methodm. A

rcc
will send two copies. One copy will simulate the rest of the

program (after z:=m(⟨V ⟩)) from the state q′, which is the state of A
rcc

after reading “z:=return”
from q2 and popping γ . The second copy will simulate the method body ofm to confirm that there

is an execution ofm from state q1 to q2. To simulate the method body ofm, A
rcc

will walk all the

way up to the root, and then walk down, until it finds the place where the definition ofm is in

the tree. A
rcc

will also need to account for the possibility that the call tom does not terminate; in

this case, it will send one copy to simulate the body ofm, and if that body ever terminates, A
rcc

will reject. Given this informal description, one can say that a state of A
rcc

will be of the form

(p,q1,q2), where q1 and q2 are a pair of states of Arcc
with the intuition that q1 is the current state

of A
rcc
, q2 is the target state to reach at the end of the method, and p is some finite amount of

book-keeping information needed to perform tasks like finding an appropriate method body to

simulate, whether the method will return, etc. Thus, the size of A
rcc

will be O(2poly( |V |)).

Theorem 14. The program synthesis problem for uninterpreted, coherent, recursive programs is
decidable in 2EXPTIME; in particular the algorithm is doubly exponential in the number of program
variables and linear in the size of the input grammar. Furthermore, a tree automaton representing the
set of all correct, coherent, recursive programs conforming to the grammar can be constructed in the
same time. Finally, the program synthesis problem in this case is 2EXPTIME-hard.

The 2EXPTIME lower bound follows from the non-recursive case (Section 6).

10 RELATEDWORK
The automata and game-theoretic approaches to synthesis date back to a problem proposed by

Church [Church 1960], after which a rich theory emerged [Buchi and Landweber 1969; Grädel

et al. 2002; Kupferman et al. 2010; Rabin 1972]. The problems considered in this line of work have

typically been about a system reacting to an environment input interactivly using a finite set of

signals over an infinite number of rounds. Tree automata over infinite trees, representing strategies,
with various infinitary acceptance conditions (Büchi, Rabin, Muller, parity) emerged as a uniform

technique to solve such synthesis problems against temporal logic specifications with optimal

complexity bounds [Kupferman et al. 2000; Madhusudan and Thiagarajan 2001; Pnueli and Rosner

1989, 1990]. In this paper, we use an alternative approach from [Madhusudan 2011] that works on

finite program trees, using two-way traversals of the tree to simulate iteration in the program. The

work in [Madhusudan 2011], however, uses such representations to solve synthesis problems for

programs over a fixed finite set of Boolean variables and against LTL specifications. In this work

we use it to synthesize coherent programs that have finitely many variables working over infinite

domains endowed with functions and relations.

While decidability results for program synthesis that go beyond finite data domains are rare, we

do know of some results of this kind. First, there are some decidability results known regarding the

synthesis of tranducers that have registers [Khalimov et al. 2018]. Transducers interactively read a

stream of inputs and emit a stream of outputs. Finite-state tranducers can be endowed with a set

of registers for storing inputs and doing only equality/disequality comparisons on future inputs

read. Synthesis of such transducers for temporal logic specifications is known to be decidable. Note

here that though the data domain is infinite, there are no functions or relations on data (other than
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equality), making it a much more restricted class (also, grammar-based approaches for syntactically

restricting transducers is not studied). Indeed, with uninterpreted functions and relations, the

synthesis problem is undecidable (see Theorem 1), with decidability only for coherent programs.

Second, closely related to the aims of this work is an unpublished paper [Caulfield et al. 2015], in

which the authors investigate decidable SyGuS problems (Syntax Guided Synthesis, a problem for-

mat for grammar-restricted synthesis). The authors study a synthesis problem where programs are

simple terms over functions (terms have if-then-else constructs but no recursion) and specifications

are given using a first-order formula over the uninterpreted function theory with function symbol

f . The problem then is to find an expression/term in the grammar such that the specification holds

when f is substituted by this term. The authors show that even this problem (without allowing

iteration/recursion in programs) is undecidable. They also identify a very restricted fragment (where

the synthesized term cannot even have if-then-else constructs) for which the problem is decidable.

In contrast to these, our synthesis results are for programs with conditionals and iteration (but

restricted to coherent programs) and for specifications using assertions in code.

A third setting with a decidable synthesis result over unbounded domains is work on strategy

synthesis for linear arithmetic satisfiability games [Farzan and Kincaid 2018]. In this work, it

is shown that for a satisfiability game, in which two players (SAT and UNSAT) play to prove a

formula is satisfiable (where the formula is interpreted over the theory of linear rational arithmetic),

if the SAT player has a winning strategy then a strategy can be synthesized. Though the data

domain (rationals) is infinite, the game here consists of a finite set of interactions and hence has

no need for recursion. The authors also consider reachability games where the number of rounds

can be unbounded, but present only sound and incomplete results, as checking who wins in such

reachability games is undecidable.

Tree-automata techniques for accepting finite parse trees of programs was explored in [Madhusu-

dan and Parlato 2011] for synthesizing reactive programs with variables over finite domains. In more

recent work, automata on finite trees have been explored for practical synthesis for synthesizing

data completion scripts from input-output examples [Wang et al. 2016]. to accept programs that are

verifiable using abstract interpretations [Wang et al. 2017], and for relational program synthesis for

synthesizing multiple programs that are related [Wang et al. 2018].

The work in [Madhusudan et al. 2018] explores a logic with ∃∗∀∗
prefixes that can be used

to encode synthesis problems, with background theories such as arithmetic as well, and that is

decidable. However, encoding program synthesis in this logic only expresses programs of finite

size. Another recent paper [HuU [n. d.]] explores sound (but incomplete) techniques for showing

unrealizability of syntax-guided synthesis problems.

11 CONCLUSIONS
We have presented foundational results on synthesizing programs; in particular, coherent programs

with uninterpreted functions and relations. To the best of our knowledge, this is the first natural

decidable program synthesis problem for programs that have arbitrary size, iteration/recursion, and

work over infinite domains. We have established that program synthesis is 2EXPTIME-complete,

where the decision procedure is doubly exponential in the number of variables and linear in the

size of the input grammar, and that this in fact matches the complexity of even Boolean program

synthesis. We have proved decidability of other related synthesis problems, including transition

systems with uninterpreted functions (EXPTIME-completeness) and recursive program synthesis

(2EXPTIME-complete).

A practical realization of our technique that lazily builds automata while looking for accepted

trees (programs) would be interesting. The use of tree automata as version space algebras in
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practical synthesis algorithms in recent work [Wang et al. 2017, 2016, 2018] gives hope for realizing

this in practice.

Finally, it is also exciting that this paper bridges the worlds of program synthesis and the rich

classical synthesis frameworks of systems over finite domains using tree automata [Buchi and

Landweber 1969; Grädel et al. 2002; Kupferman et al. 2010; Rabin 1972]. We believe this link could

revitalize both domains with new techniques and applications.
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A CONTINUED FROM SECTION 2
A.1 Encoding input/output examples
We shall encode the example of finding if a list has an element with the key k. Recall that to encode
input/output examples we must first define several models. We define them below:

assume(T , F);
assume(k’ , k);
x2 := next(x1); x3 := next(x2);
assume(x1 , NIL); assume(x2 , NIL); assume(x3 , NIL); assume(next(x3) = NIL);
assume(key(x1) = k’); assume(key(x2) = k); assume(key(x3) = k’);
assume(xans = T);
y2 := next(y1); y3 := next(y2);
assume(y1 , NIL); assume(y2 , NIL); assume(y3 , NIL); assume(next(y3) = NIL);
assume(key(y1) = k’); assume(key(y2) = k’); assume(key(y3) = k’);
assume(yans = F);
z2 := next(z1);
assume(z1 , NIL); assume(z2 , NIL); assume(next(z2) = NIL); assume(key(z1) = k); assume(key(z2) = k);
assume(zans = T);

The above program block defines three lists starting at x1, y1 and z1 respectively, having first
defined distinct Boolean constants like T and F (true and false respectively) that we can use to define

expected answers xans, yans and zans in the case of these lists. Note that the models are stored in

variables in their entirety in this example, but the complexity of our algorithm will mainly depend

on the variables used in the program template below.

Next, we choose one of the above models nondeterministically using a variable ch denoting

non-deterministic choice. Since each data model gives an initial valuation to variables, any of the

three above models could be chosen based on the following program block.

assume(chx , chy); assume(chx , chz); assume(chy , chz);
assume(ch = chz ∨ ch = chy ∨ ch = chz);
if(ch = chx) then head := x1; ans := xans;
if(ch = chy) then head := y1; ans := yans;
if(ch = chz) then head := z1; ans := zans;

Lastly, we require that the following program template be filled in, finishing the description of

the synthesis problem:

while(head , NIL)
⟨⟨ ?? | can look at keys and compare with k, can assign to a variable computedans ⟩⟩;

head := next(head);
assert(ans = computedans)

The synthesis problem in its entirety would be a grammar that generates the program blocks for

the three lists and the nondeterministic choice, plus the above template with the hole to be filled in.

It is easy to see that any correct solution to the hole must generalize accurately across the three

models specified at the beginning.

It is also possible to imagine other variants where we give different input/output examples or

provide only partial information in the examples, or multiple holes including requiring synthesis

of the loop condition.
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B PROOFS FROM SECTION 4
B.1 Undecidability of Synthesising Straight Line Programs
In this section we will present the proof of Theorem 3. We prove undecidability by reducing from

Post’s Correspondence Problem (PCP), which we define here.

Definition 4 (Post’s Correspondence Problem). Let Γ be an alphabet (with at least two symbols).

For n > 0, let there be given two lists of strings α = (α1, . . . αn) and β = (β1, . . . , βn). Then the

given instance is a YES instance iff there is a finite non-empty sequence of indices i1, i2, . . . iN
(1 ≤ i j ≤ n for every 1 ≤ j ≤ N ) such that

αi1 · αi2 · . . . · αiN = βi1 · βi2 · . . . · βiN

It is a well-known result that PCP is undecidable [Post 1946]. We shall now detail the reduction.

Given an instance of PCP P = (Γ,α , β) over alphabet Γ with lists of strings α and β , consider the
first order signature ΣP = (�, { fσ }σ ∈Γ,�) and the grammar GP = (∆P , StP ,NTP ,RP ) such that:

• ∆P = {“x1 := x2”, “x1 := x3”, “; ”}∪{t1,σ }σ ∈Γ∪{t2,σ }σ ∈Γ∪{“assume(x1 , x2)”, “assert(false)”}
where

t1,σ = “x1 := fσ (x1)”

t2,σ = “x2 := fσ (x2)”

• StP = SP
• NTP = {StP ,QP , F } ∪ {Ai }1≤i≤n ∪ {Bi }1≤i≤n ∪ {Ci }1≤i≤n where n is the length of the lists α
and β as given by P .

• RP is the following collection of rules

SP → x1 := x3 ; x2 := x3 ; QP
QP → QP ; QP
QP → C1

QP → C2

...
QP → Cn
C1 → A1 ; B1

...
Cn → An ; Bn
F → assume(x1 , x2) ; assert(false)

Let αi = σj1σj2 · · ·σj |αi | , where σjk ∈ Γ for every 1 ≤ k ≤ |αi |. Then, the production rule for

Ai is given by

Ai → t1,σj
1

; t1,σj
2

; t1,σj |αi |

Similarly, let βi = σl1σl2 · · ·σl |βi | , where σlk ∈ Γ for every 1 ≤ l ≤ |βi |. Then, the production
rule for Bi is given by

Bi → t2,σl
1

; t2,σl
2

; t2,σl |βi |

For an intuitive understanding of the production rules for Ai and Bi , recall that in our first order

signature the functions are indexed by letters from Γ. If by abuse of notation we associate the

function fγ1 ◦ fγ2 (for γ1,γ2 ∈ Γ) with the symbol fγ1 ·γ2 (and similarly for longer compositions),

then the production rule for Ai produces a program block that updates (assigns to) the variable x1
by fαi (x1). Similarly Bi produces a program block that updates the variable x2 by fβi (x2). Note that
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in our new notation, if a symbol appears earlier than another in the subscript word, the function

corresponding to it is applied later.

Observe that, although the grammar as presented does not quite conform to the grammar schema

SSLP of straight line programs over the given first order signature, it can easily be rewritten into an

equivalent grammar that does conform by introducing some extra non-terminals and folding the

(didactic) productions C1 . . .Cn into productions for QP . We claim that the uninterpreted synthesis

problem over this grammar is equivalent to the given PCP instance.

To prove this claim, observe that every program generated by this grammar is of the form

x1 := x3 ; x2 := x3 ; Ci1 ; Ci2 ; CiN ; assume(x1 , x2) ; assert(false)

for some N and some i j , 1 ≤ i j ≤ n for every 1 ≤ j ≤ N . Let π2 be the prefix that excludes the last
two statements, and π1 be the prefix that excludes the last statement.

We shall look at the correctness of this program. To do this, first see that using our shorthand

notation, the value of the variable x1 and at the end of the program block π2 is fwα (x3) where
wα = αi1 · αi2 · . . . · αiN (this can be seen using a simple inductive argument). More precisely, in

any first order modelM over our signature, the value of x1 at the end of π2 is the value (given by

M) corresponding to the term fwα (x̂3) where by x̂3 we mean the initial value of the variable x3 (the
value does not change through the program). Similarly, at the end of π2 the value of the variable x2
is fwβ (x̂3) wherewβ = βi1 · βi2 · . . . · βiN .

For the program to be correct, by our definition of correctness the prefix π1 has to be infeasible

(since the next statement is a assert(false)), i.e., infeasible in every data model. In fact since this

is a straight line program it has no other executions and therefore the program is correct iff π1 is
infeasible. Therefore let us look at the feasibility of π1.

To be infeasible in every data model, in particular it must be infeasible in the free model of terms.

Recall that in the free model the equality is syntactic equality, and therefore to be infeasible in the

free model the statement “assume(x1 , x2)” must not be true at the end of π2. That is, the value of
the variables x1 and x2, namely the terms fwα (x̂3) and fwβ (x̂3) must be syntactically equal, which

happens iffwα = wβ .

Observe that we have now concluded that an arbitrary program generated by the given grammar

is correct iffwα = wβ . However, the right hand side when expanded yields a solution to the given

PCP instance P , namely the number N and the indices i j for 1 ≤ j ≤ N such thatwα = wβ , i.e.,

αi1 · αi2 · . . . · αiN = βi1 · βi2 · . . . · βiN
From the above discussion we can conclude that there exists a correct program that can be

synthesised from the given grammar if and only if there exists a solution to the given PCP instance.

Since the original instance P was arbitrary, this yields that the given problem of uninterpreted

synthesis over the schema SSLP must be undecidable. This concludes the proof of Theorem 3.
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C PROOFS AND OTHER DETAILS FROM SECTION 5
C.1 Preliminaries on Tree Automata
C.1.1 Two Way Alternating Tree Automata. We will denote by B+(U ) the set of all positive Boolean

formulae over a setU . That is, B+(U ) is the smallest set such that {true, false} ∪U ⊆ B+(U ) and

for every φ1,φ2 ∈ B+(U ), we have {φ1 ∨ φ2,φ1 ∧ φ2} ⊆ B+(U ). For a (possibly empty) setU ′ ⊆ U
and a formula φ ∈ B+(U ), we sayU ′ |= φ if φ evaluates to true by setting each of the elements in

U ′
to true and the remaining elements ofU to false.

A two-way tree automaton is a tupleA = (Q, I , F ,δ0,δ1,δ2)whereQ is a finite set of states, I ⊆ Q
is the set of initial states and F is the set of safe states. δ0,δ1 and δ2 are respectively the transition

functions for the leaf nodes, nodes with one child and nodes with two children:

• δ0 : Q × {D} × Γ0 → B+(Q × {U }),

• δ1 : Q × {D,UL} × Γ1 → B+(Q × {U ,L}),
• δ2 : Q × {D,UL,UR } × Γ2 → B+(Q × {U ,L,R}),

Let us elaborate some of the key differences from a non-deterministic tree automaton. First, unlike

in a top-down tree automaton where the control moves to the children nodes ({L,R}) on a transition,
in a two-way automaton, the control can additionally move to the parent node ({L,R,U }). Second,

the input to the transition function δi is a triple (q,m,a). Here q and a are the current state and

the label of the current node, as in top-down non-deterministic tree automata. In addition, the

transitions of a two-way automaton also depend upon the last movem of the automaton. Thus, if

in the last move, the automaton moves from a parent node n to a child node n · d (with d ∈ {L,R}),
then the last move of the automaton would be D, denoting a ‘downward’ move. Similarly, if the

two way automaton moves from a child node n·L to the parent node n, then the last move would

beUL denoting ‘upward’ move from the ‘left’ child. The third difference arises due to alternation

instead of non-determinism— the control can move to any set of states that satisfy the Boolean

formula given by the transition function. All these differences are formalized in terms of the run of

such an automaton which we describe next.

A run of a two-way alternating tree automaton A over a finite tree T = (S,γ ) is a (possibly

infinite) directed rooted treeTrun = (Srun,γrun) (nodes in the run tree are allowed to have more than

2 children), such that γrun : Srun → S ×Q × {D,UL,UR } and the following conditions hold. (a) The

root r of the tree is such that γrun(r ) = (ϵ,q,D), where q ∈ I . (b) For every node v = (n,q,m) and

every child nodev ′ = (n′,q′,m′) ofv , ifm′ = D, then n′ = n·L or n′ = n·R, ifm′ = UL , then n = n
′·L,

and ifm′ = UR , then n = n′·R. (c) For every node v = (n,q,m) in Srun, the set Cv of children of v
is such that {(q′,d ′) | (n′,q′,m′) ∈ Cv ,d

′ = dir(n,n′)} |= δi (q,m,γ (n)), where dir(n,n
′) is L, R or

U if n′ is respectively the left child, right child or the parent of n in the input tree T . A two-way

alternating tree automaton accepts a tree T if there is any run of the automaton over T .
A two-way alternating tree automata can be converted to an equivalent top-down tree automaton

with atomost exponential blowup:

Lemma 6 ([Kupferman and Vardi 2000; Vardi 1998]). Given a two-way alternating tree automaton

A, one can construct a non-deterministic top-down tree automaton A′
of size O(2poly(|A|)) in time

O(2poly(|A|)) such that L(A) = L(A′).

Here, |A| denotes the size of the description of the automaton A. Appendix C.2 presents a

construction for the above result adapted to the simpler setting of our paper.
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C.2 Proof of Lemma 6
In this section, we shall detail the process of constructing an equivalent non-deterministic top-down

tree automaton given a two-way alternating tree automaton. The definitions of these automata can

be found in Section 5.2. These ideas are inspired from and closely follow [Vardi 1998].

The key components of the construction and the correctness arguments of this construction are

the following.

(1) Strategy annotations for a given input tree (finite binary tree in our setting) and the notion

of acceptance of a strategy annotation with respect to a tree (and the given two way tree

automaton).

(2) Equivalence between the set of trees accepted by a two-way alternating tree automaton and

trees that have an accepting strategy annotation.

(3) Construction of a top-down non-deterministic tree automatonwhose language is the language

of a given two-way alternating tree automaton. The top-down automaton we construct,

amongst other things, intuitively, decorates input trees with strategy annotations and accepts

those trees which have an accepting strategy annotation.

The overall picture is the following. Recall that the run of a two-way alternating tree automaton

at a given node in a given input tree selects a set of neigbouring nodes and states such that they

satisfy the formula given by the transition funtion. Since there can be many satisfying assignments,

we can look at the acceptance of a tree by the automaton as a turn-based two-player game played

between a Believer and a Sceptic played over the nodes of the tree. Intuitively the Believer tries to

prove that the given tree is accepted by the automaton and the other player is sceptical of that claim.

Starting at the root at the initial state of the automaton, at each point in the run of the automaton

the Believer tries to play a satisfying assignment of neighbouring nodes and states and the Sceptic

chooses one of them to force the Believer into a bad state. To avoid this, the Believer must be able

to play an assignment at every point in the run such that no matter what the Sceptic picks a bad

state will never be encountered.

As might already be obvious, we will prove below that there is a correspondence between such

winning strategies for the Believer and accepting runs of the automaton. Moreover since the above

kind of game is a special game for which the Believer’s strategies need only depend on the node of

the tree, the state, etc and not what round of the game or how far into the game the Believer is, we

can annotate the given input tree with such a special strategy (which we call a strategy annotation)
and check that it is indeed a winning strategy. Combined with the above equivalence, we construct

a non-deterministic top-down tree automaton to nondeterministically decorate the tree with a

strategy annotation and then check that the strategy is a winning strategy for the Believer, thereby

being able to accept precisely those trees accepted by the original automaton.

We shall formally detail each of these steps below.

C.2.1 Strategy Annotations. LetA = (Q, {q0}, F ,δ0,δ1,δ2) be a two-way alternating tree-automaton

(we choose a form with a single initial state for a simpler presentation). A strategy σ in A maps

states and last moves to different states and directions, i.e., σ : Q × {UL,UR ,D} → P(Q × {L,R,U }).

We denote by SA the set of strategies in A: notice that the size of this set is O(2 |Q |2 ). Given a

tree T = (S,γ ), a strategy annotation a maps each node of T to some strategy, i.e., a : S → SA
such that it satisfies the transitions of A - for every n ∈ S,q ∈ Q,m ∈ {UL,UR ,D}, we have

that a(n)(q,m) |= δi (q,m,γ (n)) (where i is 0, 1 or 2 depending upon the label γ (n), andm is also

appropriately chosen depending upon the arity of n). Note that a strategy annotation cannot exist

where the transition on any pair of a state and a previous direction is false.
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Intuitively, such an annotation directs the automaton A about which set of next (q,d) pairs to
transition to when its control is on a given node of the tree. While this picture might appear slightly

inaccurate – a given run of a two-way automaton may transition to different sets of (q,d) pairs
when visiting the same node at different times — we will later show that when a tree is accepted by

a two-way tree automaton, there is an accepting run of the automaton on the tree, that choses the

same set of states each time it visits a given node.

A strategy annotation a of a treeT is accepting if the run of the two-way automaton A that obeys
a is an accepting run. By this we mean that the run graph G = (V ,E) defined in the following

way is an accepting run of A on T (all states visited are safe). (0,q0,D, ϵ) ∈ V and for every

vertex v = (i,q,m,n) ∈ V , the set of edges outgoing from v is the set

k⋃
j=1

{(i + 1,qj ,mj ,nj )}, where

a(n)(q,m) = {(q1,d1), . . . , (qk ,dk )}, and for each j there exists the node nj in the treeT (i.e., nj ∈ S)
such that: nj = n·dj for each j andmj = D if dj ∈ {L,R},mj = UL if dj = U and n = nj ·L, and
mj = UR if dj = U and n = nj ·R.

Now, we present the crucial part of the intuition in defining strategies and strategy annotation.

C.2.2 Equivalence between accepted trees and accepting strategy annotations.

Lemma 15. LetA be a two-way alternating tree automaton and letT be a binary tree.T is accepted

by A iff there is a strategy annotation a of T which is accepting.

Proof Sketch. The ‘if’ part follows from the definition of accepting strategy annotations. As

for the ‘only if’ part, let us consider a turn-based two-player game played on the nodes of the given

tree T = (S,γ ) between a Believer and a Sceptic. Intuitively, the Believer is trying to show that T is

accepted by the automaton and the Sceptic does not believe that and throws challenges along the

way.

A configuration of the game is an element of S ×Q × {UL,UR ,D}. The game starts at the root ofT
at starting configuration (ϵ,q0,D). During each round of the game, say configuration (n,q,m), the

Believer goes first and chooses an element anqm of P(Q × {L,R,U }) such that anqm |= δi (q,m,γ (n))
(where i is 0, 1 or 2 depending upon the label γ (n), andm is also appropriately chosen depending

upon the arity of n). If δi (q,m,γ (n)) = f alse then the Sceptic wins immediately. If not, the Sceptic

chooses an element (q′,d ′) of anqm and the game then transitions to the configuration (n′,q′,m′)

such that n′ = n.d ′
exists in S andm′ = D if d ′ ∈ {L,R},m′ = UL if d ′ = U and n = n′·L, and

m′ = UR if d ′ = U and n = n′·R. If n′ does not exist in S , then too the Sceptic wins immediately. We

define the winning condition to be that the Believer wins if the game only encounters states (the Q
component of the configuration) in F (as given by A), i.e., safe states.
A strategy for the Believer is a map from configurations to the possible choices for each round

of the game and is an object of the form N→ (S ×Q × {UL,UR ,D} → P(Q × {L,R,U })). Since the

game can take many paths crossing many configurations, given a strategy σBel for the Believer and
depending on the possible strategies of the Sceptic, we can represent the possibilities of the game as

a graph of configurations starting at the root (0, ϵ,q0,D) (owing to our default initial configuration)
and where a node (i,n,q,m) has a child (i +1,n′,q′,m′) only if (n,q,m) and ((n′,q′,m′) are possible

successive configurations in rounds i and i + 1 respectively(induced by the choices of the Sceptic).

By comparing definitions it is clear that this graph is the same as the directed graph that defines a

run of the automaton A. Let us call this the run defined by the Believer’s strategy σBel . Lastly, it is
clear that σBel is a winning strategy iff the above graph does not encounter any bad states, which

happens iff A accepts T on the run defined by σBel .
Observe that the above is also a generalization of the notion of a run that obeys a strategy

annotation, where we can consider the run that obeys a : S →SA (whereSA consists of elements
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of the form Q × {UL,UR ,D} → P(Q × {L,R,U })) as the run defined by the strategy σa given by

σa(n,q,m) = a(n)(q,m). We can also see that the strategy annotation is accepting iff the strategy

defined by it in the above manner is a winning strategy for the Believer.

Finally a well-known result [Grädel et al. 2002] gives us that the above kind of game is a safety
game (and more generally a parity game) and that these games are determined and have positional
or memoryless strategies. The determinacy implies that starting at the root of the input tree T
the Believer either has a winning strategy or it does not, i.e., the tree is either accepted by the

automaton or it does not. This is clear already from the correspondence between runs and winning

strategies explained above. However, the fact that positional strategies exist mean that the Believer

has a winning strategy that plays the same set aqnm whenever it visits the same configuration.

So far, we have that accepting strategy annotations correspond to winning strategies (that are

also positional), and that winning strategies correspond to accepted trees. Expanding the above

observations, we have that if A accepts T then the Believer has a positional winning strategy, i.e., a

strategy that maps each configuration from S×Q×{UL,UR ,D} to an element ofP(Q×{L,R,U }). But

this can be interpreted to be a strategy annotation, i.e., an element of the form S → (Q ×{UL,UR ,D}
to an element of P(Q × {L,R,U })) that provides a set to be played for every possible state and

previous move at a given node in the tree. Moreover, it is also clear that since A accepts T this

strategy must be a winning strategy and therefore the strategy annotation must be accepting. This

completes the other direction of the proof. □

C.2.3 Construction of an Equivalent Top Down Automaton. Let us now embark on the description

of the non-deterministic top down tree automatonA′
that accepts the same language as a given two

way alternating tree automaton A. The first step towards seeing intuitively that this construction is

possible is Lemma 15, which ensures that it is possible to guess the moves of the two-way automaton

in one shot. The challenge however is to verify the guessed annotation is an accepting annotation,

in a top-down manner. To tackle this, we observe that, the set of states visited in any given run,

when on a given node n is also a finite set (some subset of Q) and one can also guess these sets (or

bags) of states. The check for acceptance then translates to checking if (a) from every state in the

bag of a node n, you transition with a pair (q,d) such that q is in the bag of n·d and (b) each bag is

a safe set of states. Let us formalize the construction below.

We fix A = (Q, {q0}, F ,δ0,δ1,δ2) to be the given two-way automaton. The top-down automaton

is a tuple A′ = (Q ′ ∪ Sink, I ′,δ ′
0
,δ ′

1
,δ ′

2
). States of A′

that are in Q ′
are valid pairs of the form (σ ,B),

where σ ∈ SA and the bag is a set of pairs of safe states and some move, i.e., B ⊆ F × {D,UL,UR },

and further, for every symbol a ∈ Γ, and for every (q,m) ∈ B, we have that σ (q,m) |= δi (q,m,a) (i
is appropriately chosen depending upon the arity of a). The set of initial states is I ′ = {(σ ,B) ∈
Q ′ | ∃(q0,m) ∈ B}.

Let us now describe the transitions. The transition δ ′
1
is such that for every (σ ,B) ∈ Q ′

and for

every a ∈ Γ1, every state (σ1,B1) ∈ δ ′
1
((σ ,B),a) satisfies the following two conditions.

(a) For every (q,m) ∈ B and for every (q′,L) ∈ σ (q,m), we must have (q′,UL) ∈ B1.

(b) For every (q,m) ∈ B1 and for every (q′,U ) ∈ σ1(q,m), we must have (q′,UL) ∈ B.

The description of δ ′
2
is analogous. For every (σ ,B) ∈ Q ′

and for every a ∈ Γ1, every pair of state(
(σ1,B1), (σ2,B2)

)
∈ δ ′

2
((σ ,B),a) satisfies the following conditions.

(a) For every (q,m) ∈ B and for every (q′,L) ∈ σ (q,m), we must have (q′,UL) ∈ B1.

(b) For every (q,m) ∈ B1 and for every (q′,U ) ∈ σ1(q,m), we must have (q′,UL) ∈ B.
(c) For every (q,m) ∈ B and for every (q′,R) ∈ σ (q,m), we must have (q′,UR ) ∈ B2.

(d) For every (q,m) ∈ B2 and for every (q′,U ) ∈ σ2(q,m), we must have (q′,UR ) ∈ B.
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Finally, δ ′
0
= Q ′ × Γ0 is the complete relation on Q ′

and Γ0. We also complete the automaton by

sending all other transitions to the Sink state such that the automaton transitions until the leaves,

all in the Sink state. Due to our δ ′
0
, this means that if any leaf in a tree goes to Sink then that tree is

rejected.

Lemma 6. Given a two-way alternating tree automaton A, one can construct a non-deterministic

top-down tree automaton A′
of size O(2poly(|A|)) in time O(2poly(|A|)) such that L(A) = L(A′).

Proof Sketch. We first define the notion of a strategy-consistent annotation over an input

tree T = (S,γ ) (w.r.t. the two-way alternating tree automaton A) extending a strategy annotation

a, denoted by a, as a map of the form a : S → SA × P(Q × {UL,UR ,D}) if for every s ∈ S ,
a(n) = (σn ,Bagn) for σn = a(n) and some Bagn such that (q0,D) ∈ Bagϵ and for each node n of T
visited by the run (defined by a) of A at state q and previous directionm, a(n) = (σn ,Bagn) where
a(n) = σn and (q,m) ∈ Bagn . Intuitively, at each node of the input tree apart from deciding what

strategy to play it also tracks the set of states and previous directions at which the automaton

visits that node in the tree (including bad states). Observe that for any strategy annotation over an

input tree there always exists a minimal strategy-consistent annotation that only includes in each

bag the exact states and previous directions at which the node is visited (the proof of this fact is

trivial and is skipped). An accepting strategy-consistent annotation is simply one that extends an

accepting strategy annotation. We will see later that accepting strategy-consistent annotations are

nondeterministically guessed, giving us our construction.

We detailed above a run of a two-way alternating tree automaton obeying/induced by a given

strategy annotation over an input tree in the proof of Lemma 15. Given the above definition of a

strategy-consistent annotation we can restate the definition of an accepting strategy annotation

using the following lemma.

Lemma 16. Given any strategy-consistent annotation a extending a strategy annotation a, for

every non-leaf node n ∈ S the following holds:

(1) For every (q,m) ∈ Bagn that is visited by the run of A (induced by a) and for every (q′,L) ∈
σn(q,m) it must be the case that n′ = n.L ∈ S and (q′,D) ∈ Bagn′ .

(2) For every (q,m) ∈ Bagn that is visited by the run of A and for every (q′,R) ∈ σn(q,m) it must

be the case that n′ = n.R ∈ S and (q′,D) ∈ Bagn′ .

(3) For every (q,m) ∈ Bagn that is visited by the run ofA and for every (q′,U ) ∈ σn(q,m) it must

be the case that n′ = n.U ∈ S and (q′,m′) ∈ Bagn′ wherem′ = UL if n′ · L = n andm′ = UR
otherwise.

Moreover the converse is also true, i.e., if there exists a strategy-consistent annotation a and a

strategy annotation a that (i) satisfies the above properties and (ii) (q0,D) ∈ Bagϵ (of a), then the

strategy-consistent annotation extends the strategy annotation.

The first part of Lemma 16 is clear by restating the definition of a run that obeys a given strategy

annotation in terms of a strategy-consistent annotation extending it. The converse can be realized

using a simple inductive argument that inducts on the first component of the vertices of the run-

graph (which is a natural number) obeying the strategy annotation. The idea is that if a vertex is

visited at a certain state and previous direction, the first requirement ensures that the bag of the

neighbouring vertices that are visited at the next stage of the induction contain the appropriate

states and previous directions according to the transition function of A. The base case is ensured
by our second requirement.

Given both directions of Lemma 16 it is also clear that it is enough to check if a strategy-

annotation is accepting by checking if there exists a strategy-consistent annotation extending it

that (i) contains only safe states (ii) satisfies the conditions of Lemma 16 for all states in every bag
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(as appropriately applies), not just the states visited byA. This is because if such an extension exists

we are done, and there always exists a minimal extension (whose bags only contain the visited

states) to which the conditions apply on every element and will contain only good states in every

bag if the strategy annotation is accepting.

The proof of Lemma 6 concludes by observing that the constructed automaton transitions, by

definition, on a non-leaf node if and only if it meets the obligations of Lemma 16 on that non-leaf

node (in this special way of the entire bag satisfying the properties and the bags containing only

safe states). Therefore the automaton transitions to the final state on every path if and only if every

non-leaf node meets the obligations of Lemma 16, which can be equivalently stated as the fact

that the input tree has an accepting strategy-consistent annotation, i.e., is in the language of the

original two-way alternating tree automaton.

The size of the automaton A’ and the time to build it are also clear from the size of strategy-

consistent annotations. □

C.3 Top Down Tree Automata as Acceptors of Program Trees
C.3.1 Grammar to Tree Automaton. The next task is to represent the set of programs generated by

an input grammar G as a regular set of program trees. We will use the non-deterministic top-down

tree automata for this purpose. More precisely, we will construct a tree automaton A
G
which

accepts precisely the set of trees that correspond to the programs generated by G = (∆, St ,NT ,R).
We require that G conforms to the schema S discussed in Section 3.2.1.

Let us now define the components of A
G
= (QG, I G,δ G

0
,δ G

1
,δ G

2
). The automaton as states the

non-terminals of G, and additionally there is a special start state q0. That is, Q
G = {q0} ⊎ NT , and

I G = {q0}. The transitions are defined as follows.

δ G

0
= {(P ,a) | “P → a” ∈ R,a ∈ Γ0}

δ G

1
(q,a) =


{St} if q = q0,a = “root”
{P1 | “P → while (x ∼ y) P1” ∈ R} if q = P ,a = “while(x ∼ y)”

� otherwise

δ G

2
(P ,a) =

{
{(P1, P2) | “P → if (x ∼ y) then P1 else P2” ∈ R, } if a = “ite”(x ∼ y)

{(P1, P2) | “P → P1 ; P2” ∈ R} if a = “seq”

The following lemma states that the language of the tree automaton thus constructed accurately

represents programs from G.

Lemma 17. Let G be a grammar conforming to the schema S and let A
G
be the tree automaton

constructed above. Then, we have L(G) = {Prog(T ) | T ∈ L(A
G
)}. Further,A

G
can be constructed

in time O(|G|) and has size O(|G|). □
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D DETAILED PROOF OF 2EXPTIME HARDNESS
LetM = (Q,∆,δ ,q0,д) be a single-tape alternating Turing machine (ATM) with exponential space

bound, whereQ and ∆ are finite sets of states and tape symbols, respectively. The transition function

has the form δ : (Q × ∆) → P(Q × ∆ × {L,R}). Without loss of generality, we will assume that

either there exist exactly two transitions (referred to as 0 and 1) for any particular configuration

or none at all. The initial state is q0 ∈ Q and д : Q → {acc, rej,∧,∨} maps states to their type.

It will be convenient to represent machine configurations as sequences of tape symbols. For a

given machine M , this can be allowed by working with a modified machine M ′
whose alphabet

Γ = ∆∪ (Q ×∆) contains the original symbols from ∆ as well as composite symbols from (Q ×∆) to
encode both the machine head position and machine state. For example, for state q ∈ Q and regular

symbol t ∈ ∆, the composite symbol (q, t) ∈ Γ encodes the tape head reading regular symbol t
with the machine in state q. The transition function δ can easily be modified to account for this

representational change, and we omit the details. A universal (resp. existential) configuration is

a sequence of tape symbols containing one composite symbol (q, t), with д(q) = ∧ (д(q) = ∨). A

configuration is accepting (rejecting) if its composite symbol (q, t) has д(q) = acc (д(q) = rej).
Accepting (rejecting) states can be assumed to have no transitions and are thus halting. The set of
accepting configurations is the smallest set S that contains (a) all states q with д(q) = acc , (b) all
universal configurations such that every configuration reachable within one transition belongs to S
and (c) all existential configurations such that there is some configuration in S reachable within one

transition. An ATMM accepts an inputw if the initial configuration is accepting. In what follows,

we will assume without loss of generality that existential configurations are immediately followed

by universal configurations under any transition, and vice versa. Further, we assume the initial

configuration is existential.

Our representation of configurations as sequences of tape symbols will allow us to work with a

modified transition relation δW that is lifted to configuration windows. A configuration window is

a triple of tape symbols. After retrofitting a given ATM with compositite symbols, as mentioned

above, the information in δ can be easily represented by δW ⊆ (Γ3 × Γ), which relates triples of

tape symbols (a window that views three adjacent tape cells) to symbols that the middle cell can

legally transition to according to δ . For convenience in the reduction grammar we will overload δW ,

writing δW (0, ti , tj , tk ) to denote the tape symbol for the cell containing tj (with ti and tk to the left

and right) after the machine takes the 0 transition. Similarly, δW (1, ti , tj , tk ) will denote the tape
symbol for the 1 transition. If the window (ti , tj , tk ) is ill-formed (for example, it may contain more

than one composite machine state symbol) we say δW (0, ti , tj , tk ) and δW (1, ti , tj , tk ) are undefined.
We will not discuss the details for handling corner cases in which the machine reads at either edge

of the tape, noting that this can be easily dealt with by assuming special edge-of-tape symbols. In

the forthcoming grammar, we assume |Γ | = k and use t1 . . . tk as constants to model the extended

alphabet of the (appropriately modified) machineM . Indices for such variables are sometimes used

to indicate the particular symbol they contain, e.g. tblank refers to the unique blank symbol.
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D.1 Reduction
Before presenting the reduction grammar GM,w , we discuss

its primary components and summarize the purposes of its

program variables. Recall that the goal of the reduction is

to produce a grammar GM,w ∈ S that contains a correct

program exactly when an AEXPSPACE turing machineM
accepts an inputw . Essentially, this amounts to building a

grammar whose correct programs encode winning strate-

gies for Eve in the two-player game semantics. That is, we

want a correct program to exist in GM,w exactly when there

is a configuration tree starting from the initial configura-

tion ofM onw , branching appropriately according to δ , and
terminating in accepting leaf configurations. The grammar

encodes the alternation by branching on a turn variable

(Adam or Eve) and choosing the next transition accordingly.

For Eve’s turn, the grammar enforces a transition choice

from the synthesizer, whereas Adam’s turns are read from

the uninterpreted function choice. Relying on our intuition
that correct programs must satisfy assertions in every data

model, we observe that this modeling decision captures the

semantics of ATMs.

Deeper in the grammar, we will find that after a move has

been made, there is a mechanism for requiring that the next

configuration (produced by the synthesizer) indeed follows

from the selected move according to δ . As noted earlier, the
full configuration cannot be represented in program vari-

ables all at once becauseM may use exponential space (and

hence a grammar using exponentially many variables could

not be produced in polynomial time). To circumvent this

issue, the grammar uses awhile loop to iterate through the

full configuration, enforcing that the synthesizer produces

the configuration contents one cell at a time. See Figure 2

for an illustration of this idea. Further, since the full config-

uration contents cannot be stored at once, the correctness

check must distribute the work across all data models. For

an inputw withm = |w |, the grammar utilizes n = poly(m)
index variables s1 . . . sn to point into the configuration. For

any given data model, the index points at a single tape cell.

For this single cell, the grammar enforces that all transitions

are correct. Since uninterpreted programs must be correct

in all data models, it follows that a correct program from

the target grammar will witness the correctness of transi-

tions for all tape cells. Finally, the grammar enforces that

any leaf configurations are accepting. Table 1 describes the

purposes of the symbols that appear in the grammar, several

of which have not yet been mentioned. We denote vectors

of variables with boldface, e.g. s1 . . . sn by s.

t1 1

t3 2

t7 2
poly(m)

t5

t2

t16

t8

0

0 1

1 0

Fig. 2. A strategy tree for
Eve. Large circles represent
Eve’s moves, squares represent
Adam’s. Small circles represent
steps in which Eve chooses a
tape symbol and Adam checks
it. Each move requires Eve to
output an exponential number
of tape symbols ti , one after the
other. She must be able to do
this for each of Adam’s moves
in addition to her own. Such a
strategy, if Adam indeed agrees
with the tape symbols, witnesses
an accepting computation tree
for the ATM.
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w1 . . . wm : store input tape contents

t1 . . . tk : constants to represent tape symbols

s1 . . . sn : index holding location of the cell being checked

s′
1
. . . s′n : index holding location of binary predecessor to s1 . . . sn

s′′
1
. . . s′′n : index holding location of binary successor to s1 . . . sn

b1 . . . bn+1: index for pointing at current tape cell during iteration

0, 1: constants used for indices as well as move choices

cell: holds the putative current tape symbol

turn: holds 0 or 1, represents which player has the next move

dir: holds 0 or 1, the most recent move choice

c1, c2, c3: the previous contents of the configuration window for the cell being checked

c′
1
, c′

2
, c′

3
: the next contents of the configuration window for the cell being checked

choice: uninterpreted function that models Adam’s moves,

restricted to 0 and 1 with an assume statement

next: uninterpreted function that captures the time-dependence of Adam’s decisions

Table 1. Summary of purposes for grammar variables.

Figures 3, 5, and 4 present the full grammar GM,w . The reader may note that GM,w does not

appear to conform to our grammar schema S. It is not hard to see that in fact GM,w can be factored

appropriately by introducing a polynomial number of new non-terminal symbols to produce the

components involving fixed instruction sequences. Before arguing that our reduction is correct, we

pause to mention a few presentation-related details and to explain the important rules for GM,w .

To simplify the presentation of the grammar and promote its interesting rules, several simpli-

fications and omissions were made. First, we omit else branches whenever they include only a

skip statement. Second, several of the conditions in if and assume statements consist of boolean

combinations of equality and disequality. These can be translated into semantically equivalent

statements using sequences of nested if statements. For each condition in GM,w , the translated

code is of polynomial size. This crucially relies on the fact that each condition is already expressed

in conjunctive normal form. We omit the precise translation, which is straightforward. Additionally,

in a few places in the grammar we use boldface to denote the bitvector representation of a number

n, e.g. n. Equalities over bitvectors (e.g. if (b = n)) ultimately are handled using a conjunction of

equalities on each bit. Overflow and underflow in the binary operation rules are not addressed,

but could easily be fixed by adding conditional statements and keeping a few variables as flags to

signal such events. Finally, when two bitvectors of disequal length are compared (see b and s in
<Check>), the bitwise comparision of the least significant bits is intended.

At this point, we encourage the reader to digest this paragraph by walking through Figure 3

as we trace the important parts of the grammar structure. The <Move> rule serves to extend the

strategy tree by one move, or alternatively, finish it in <Base> by asserting that configurations are

accepting. For extending the tree, the grammar checks which player’s turn is next with a conditional

statement. On one branch the synthesizer is allowed to choose a transition to make, and on the

other the transition is determined by reading from choice. After determination of the next move
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⟨bit ⟩ → 0 | . . . | 1

⟨tape ⟩ → t1 | . . . | tk
⟨idx ⟩ → b1 | . . . | bn+1

⟨S ⟩ → ⟨Prelude ⟩;⟨Move ⟩

⟨Move ⟩ →
| ⟨Base ⟩
| if(turn = 1)

dir := ⟨bit ⟩;
turn := 0;

⟨Generate ⟩
else

dir := choice(univ);

assume(dir = 0 ∨ dir = 1);

univ := next(univ);

turn := 1;

if(dir = 0)⟨Generate ⟩
else ⟨Generate ⟩

⟨Generate ⟩ →
b := 0;

while (bn+1 , 1)

⟨ProduceCell ⟩;
⟨Check ⟩;
⟨Increment ⟩;

⟨Move ⟩

⟨Base ⟩ →
if(

∨
t∈Γ∧ comp(t) c2 = t)

assert (
∨

t′∈Γ∧acc(t′) c2 = t′)

⟨ProduceCell ⟩ →
| if(⟨idx ⟩ = ⟨bit ⟩)

⟨ProduceCell ⟩
else

⟨ProduceCell ⟩
| cell := ⟨tape ⟩

⟨Check ⟩ →
if(b = s′)

c′
1
:= cell

if(b = s)

c′
2
:= cell

if (c1 = ti ∧ c2 = tj ∧ c3 = tl )

if(dir = 0)

assert (cond0)
else

assert (cond1)
else if (c1 = ti′ ∧ c2 = tj′

∧ c3 = tl ′)

. . .

if(b = s′′)

c′
3
:= cell

c1 := c′
1
; c2 := c′

2
; c3 := c′

3

Fig. 3. Rules to impose the desired strategy tree structure and to check correctness of each move. Note
that <Check> elides the full branching on possible windows, and uses a shorthand condition assert(condx)
to denote assert(c2 = δW (x, ti, tj, tk)) whenever δW (x, ti, tj, tk) is defined, and to denote
assert(false) otherwise. The shorthand notation comp(t) holds for any composite symbol t = (x ,q) ∈ Γ,
and acc(t) holds for any composite symbol t = (x ,q) with д(q) = acc . See Figures 5 and 4 for <Prelude> and
<Increment>.

in each branch we find the <Generate> rule, described next. The <Generate> rule coordinates the
simulation and checking of the most recent move. The synthesizer iteratively produces the contents

of each tape cell inside a while loop. It is allowed to branch on the index variables that determine

the current iteration (and not the secret index s) in order to decide which symbol to produce

(see <ProduceCell>.) The grammar checks correctness of a transition only for the particular cell it

happens to be tracking (see <Check>). After this, the grammar repeats the process with another

<Move>. Recall that in general, a strategy for Eve requires more memory than can be explicitly

allocated in program variables. The grammar provides for this memory by placing <Generate> rules
under each branch of the <Move> rule. This has the effect of using the program counter as memory,

as mentioned earlier.

Our grammar can be produced in time polynomial inm = |w |. There are polynomially many

grammar rules, and each is clearly of size polynomial inm. The key components that make this

possible are the use of a bounded loop to produce tape contents, as well as the technique of

distributing the problem of checking transition correctness across data models. Finally, memory is
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provided to the synthesizer by choosing a grammar that allows the program structure to grow as a

tree, with branches encoding the move history.

⟨Increment ⟩ →
if (b1 = 0)

b1 := 1

else
b1 := 0

if (b2 = 0)

b2 := 1

else
b2 := 0

if (b3 = 0)

. . .

⟨SetPred ⟩ →
if (s′

1
= 0)

s′
1
:= 1

if (s′
2
= 0)

s′
2
:= 1

. . .

else
s′
2
:= 0

else
s′
1
:= 0

⟨SetSucc ⟩ →
if (s′′

1
= 1)

s′′
1
:= 0

if (s′′
2

= 1)

s′′
2
:= 0

. . .

else
s′′
2
:= 1

else
s′′
1
:= 1

Fig. 4. Rules for binary operations on bitvectors.

⟨Prelude ⟩ →
⟨DistinctConstants ⟩;
assume(

∧
i∈[m] wi = twi );

assume(
∧
i∈[n] si = 0 ∨ si = 1);

assume(s′ = s ∧ s′′ = s);
⟨SetPred ⟩;⟨SetSucc ⟩;
b := 0;

while (bn+1 , 1)

if(b = 0)

cell := w1
else if(b = 1)

cell := w2
. . .

else if(b = n)

cell := wn
else

cell := tblank
if(b = s′)

c1 := cell

if(b = s)

c2 := cell

if(b = s′′)

c3 := cell

⟨Increment ⟩
turn := 1

⟨DistinctConstants ⟩ →
assume (0 , 1);

assume(
∧
i, j∈[m],i,j wi , wj);

assume(
∧
i, j∈[k ],i,j ti , tj)

Fig. 5. The prelude encodes the input tape sym-
bols in the variables wi , where twi denotes the
corresponding tape symbol constant. It also es-
tablishes the secret tracked cell index in variables
sj . The while-loop prepares the initial tape con-
figuration. See Figure 4 for bitvector operation
rules <SetPred>, <SetSucc>, and <Increment>.

D.2 Correctness
Theorem 18. M accepts inputw if and only if there exists a coherent program p ∈ GM,w such that
p is correct.

Proof. (⇒) Let T be an accepting computation tree forM onw . We are to produce a coherent

p ∈ GM,w that satisfies its assertions. We can build p during a pre-order traversal of T . Note that p
will contain branches under the <Move> rule that are not taken under any data model, and hence

do not affect correctness. This is simply by dint of the fact that it is only one player’s turn in each

step. It does not matter how these branches are synthesized, so we can take them to all use the
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<Base> rule. We now proceed to describe only those program branches that are relevant to ensuring

that all assertions hold. The <Prelude> rule corresponds to the root of T and produces the initial

configuration, from which the initial window contents are set in c.
During traversal, if we reach in T a configuration c j−1 (j > 0) that is existential, choose dir := 0

(left) in the if branch of <Move> if it is the case that c j is the left child of c j−1. Otherwise choose
dir := 1 (right). In <ProduceCell> under <Generate>, expand such that every possible cell index

(valuation of b) is branched upon. Choose cell := ts in the leaf of the branch for (b = i), where
(c j )i = ts . It is not hard to see that for every interpretation of the index s (where s ranges over
possible cells to track) the transition assertion in <Check> will indeed hold. We have made sure

to select the correct choice for dir and the transitions in the computation tree are necessarily

correct. If c j−1 is a universal configuration with left and right children clj and c
r
j in T , proceed in

a similar manner to that of the existential case for the left <Generate> subtree in the else branch
of <Move>, and upon returning to this branch in the traversal, do the same for the <Generate>
subtree on the right. Upon encountering a leaf of T (which is an accepting configuration), take

the terminating <Base> rule under <Move>. This asserts that any cell containing a machine state

symbol in fact contains the accept state symbol. Since our procedure has only ever produced cell

contents corresponding to valid machine configurations that proceed according to the transition

relation, it is the case that in every interpretation in which the tracked cell contains a state symbol

we have c′
2
= qacc .

It is not hard to see that any program from GM,w will be coherent, as noted in our discussion

about boolean programs. The grammar ensures that no memoizing failures are possible, since

every variable is effectively boolean, with the exception of the hardcoded machinery for reading

universal moves from the data model. In that case, terms are computed in a linear fashion and there

is no chance for recomputation. Finally, all assumes are early by virtue of the fact that no variables

appearing in equality conditions are ever used in a computation with an uninterpreted function.

(⇐) Suppose we have the derivation tree of a coherent program p ∈ GM,w such that p satisfies

its assertions. We are to show there is an accepting computation tree for M on w . Consider two

cases:

Case: no moves In this case p does not make any moves, which corresponds in its derivation

tree to the <Move> production immediately rewriting to <Base>. Since p is correct, it satisfies its

assertions (in all data models) and, in particular, it satisfies them in a model where the tracked

cell contains the initial state symbol qinit . That is, the success of assert(c2 = qacc) implies that

qinit = qacc . HenceM has the initial configuration as a trivial accepting computation tree onw .

Case: some moves Let us think of the depth of the derivation tree for p only in terms of the rules

<S>, <Move>, <Generate>, and <Prelude>. This allows us to speak of the number of moves in p in

terms of the depth of its derivation tree. Now, suppose p has a derivation tree in GM,w of depth

2m + 2, withm > 0 (m is the number of moves). We build an accepting computation tree as follows.

Base: The root of the budding computation tree is c0 = a1 . . . a2n , where ai is the tape symbol

corresponding to the choice for the ith cell in the <Prelude> loop. We can simulate the loop (which

is bounded) to obtain the cell contents. It is clear that this is the proper initial configuration forM
onw .

Inductive: The inductive case proceeds similarly to the pre-order traversal from the other direction

of our proof. Universal turns involve building two branches of the computation tree, whereas

existential turns only build one. Once again, we ignore the infeasible branches of the derivation

tree, and we can determine which branches these are by keeping track of the turn variable

during the traversal. For existential turns in the derivation tree, we build the next configuration

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: October 2019.



44 Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan

by inspecting the cell choices (via simulation of the bounded loop) in the <Generate> subtree

(under the if branch of <Move>). Suppose the configuration cnext , so generated, were not correct.

That is, cnext does not follow according to the transition relation δW from the computation tree

parent cprev . Then there must be some index k for which cell k of cnext is wrong according to

δW . But there is then a model where (s = k) holds, and hence the corresponding assertion

inside <Check> fails, contradicting the correctness of p. Universal turns in the derivation tree are

processed similarly to existential turns by first traversing the left <Generate> subtree and later the
right.

Finally, since the derivation tree is finite, the last derivation on every branch gives the assert for

qacc . There is a model where the tracked cell contains the final machine state symbol. In that model,

the satisfaction of the assertion ensures that the configuration at every leaf in the computation tree

is indeed an accepting configuration. □
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E TRANSITION SYSTEM EXPTIME HARDNESS
We show that the realizability and synthesis problems are EXPTIME-hard using a reduction from

the membership problem for alternating PSPACE Turing machines. The goal of the reduction is

to design a specification (AR and AS ) such that a correct transition system that satisfies it will

witness an accepting computation for the PSPACE Turing machine.

The key to modeling the desired TM semantics in AR is to observe that there is a relationship

between the transitions of a specification automaton AR and the nodes of a transition system

TS that satisfies it. Notice that the only way for our transition systems to produce executions

containing assume(x = y) is to branch at a check(x = y) node. Thus, any execution ending

with an equality assumption is always accompanied by a correponding execution ending with

a disequality assumption instead. As in the program synthesis reduction grammar, we want to

restrict our attention to only certain data models. For example, we want to make sure that the

variables we use to model the TM tape cells initially contain the input symbols. In the program

case, we used statements of the form assume(x = y) to achieve this. Here however, we introduce

rules in the transition relation for AR that allow reading either assume(x = y) or assume(x , y).
The state reached by reading the negated condition (x , y in this example) will be an accepting

state for AR . This reflects the fact that we are uninterested in requiring anything of executions

where the TM does not begin with the appropriate input symbols on its tape. See Figure 6 for a

picture that illustrates this kind of modeling. Assertions can be modeled in a similar way. Recall

that, besides assignment statements, our transition systems are restricted to checking equality

and disequality conditions and asserting false. Thus, to model assert(x = y) a transition system

would first branch on check(x = y), proceeding with computation in the affirmative branch

and reaching assert(false) in the negative branch. Such assertions can be enforced in AR by

introducing transitions for assume(x = y) and assume(x , y), with the latter transitioning to an

accepting state after reading assert(false). See Figure 7 for a picture that illustrates this kind of

modeling.

Having made the observation that much of the componentry from the program synthesis

reduction grammar can be modeled in the transitions of the specification automaton AR , we

emphasize once more the crucial difference between program and transition system synthesis. If

we attempted to recreate the 2EXPTIME-hardness proof in this setting, we would be unable to hide

information from the synthesizing algorithm. Imagine that we try using variables to store the secret

index of the tape cell being checked. In order for these variables to serve the purpose of the lower

bound proof, they will eventually be involved in a check node. This has the effect of permanently

leaking their values to the synthesis algorithm, which can make synthesis decisions on the basis

of that information. Indeed, program specification in terms of grammars allows one to enforce

the uniformity of synthesized code, whereas specification in terms of acceptable executions does

not. This leads to an easier problem. We now give an overview of the reduction from alternating

PSPACE TMs. The structure is quite similar to that of the reduction for grammer-restricted program

synthesis, and we hence omit many details.

E.1 Gist of the Reduction
Given an alternating PSPACE TMM and inputw with |w | =m, we must construct a specification

consisting of deterministic execution automata AR and AS such that there is a correct transition

system satisfying the specification exactly whenM acceptsw . We will assume thatM uses a counter

to ensure its termination in 2
poly(m)

time. Let us now discuss the key aspects of AR . We omit a full

description, preferring to compare the main components to the corresponding ones in the reduction

grammar for program synthesis. Note that AS will accept the prefix closure of L(AR ). It can be
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constructed by a simple modification that makes final any automaton state that is part of a path

from the initial state to a final state in AR .

<next> x	:=	x

check
(x=y)

<next>

assume
(x!=y)

assume
(x=y)

x	:=	x

assume(x=y);
<next>

Transition
System

Execution
Automaton

Assume
Code

Fig. 6. To model the Assume Code, use the Transition Sys-
tem, which can be specified with the Execution Automaton.
The <arbitrary> command can be any assignment, and <next>
represents whatever code may follow the assume.

<next>
assert
(false)

check
(x=y)

<next>

assume
(x!=y)

assume
(x=y)

assert
(false)

assert(x=y);
<next>

Transition
System

Execution
Automaton

Assert
Code

Fig. 7. To model the Assert Code, use the Transition System,
which can be specified with the Execution Automaton. The
<next> represents whatever code may follow the assert.

The states and transitions ofAR can be

divided based on which of four main goals

they serve. The first goal is to initialize

the program variables that model the TM

tape cells. This can be accomplished with

a polynomial number of assume transi-

tions, as mentioned earlier and depicted

in Figure 6. The second goal is to simu-

late the decision for the next player (ei-

ther Adam or Eve). Similar to the program

synthesis reduction grammar, we can use

variables turn and dir to model the TM

alternation and the transition choice, re-

spectively. The third goal is to facilitate

the generation of new tape contents after

a transition decision is made. Similar to

the program grammar reduction, the tape

contents are produced iteratively and the

correctness of each choice will be checked

by referring to a sliding window of three

previous tape cells. An important differ-

ence is that we can store the entire tape

contents in variables, since the TM uses at

most polynomial space. Further, each cell

can be updated in sequence without any

counter. There are a polynomial number

of tape cell updates for any given machine

transition, and each update can be speci-

fied and checked with a bounded amount

of nested branching with assume transi-
tions. After each cell is updated, we can

model an assert to ensure the update follows the appropriate TM transition. Recall that adequate

memory was ensured in the grammar reduction by requiring programs to branch on transition

choices. Analogously, in AR we include transitions for assume(dir = 0) and assume(dir , 0)

to enforce branching, and thus adequate memory. Following the polynomially large sequence of

transitions for choosing tape symbols and checking their correctness, the automaton returns to the

turn and dir machinery to (possibly) repeat the process.

At some point, rather than simulating another turn and transition, the execution should be

allowed to finish. Once again, this is handled in a similar way as in the program case. We ensure

that the contents of the tape varibles indeed constitute an accepting configuration by checking that

if a tape variable contains some machine state symbol, then that symbol must be the accepting

state symbol. This can easily be accomplished in a manner similar to checking correctness of

tape transitions. Note that all automaton nodes discussed above involve implicit transitions to an

absorbing reject state for all unmentioned letters. Each of the four goals outlined above can be

easily implemented with number of states polynomial in the size of the TM input. Furthermore,
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the prefix automaton AS can be constructed by making every state accepting, with the exception

of the absorbing reject state.

E.2 Correctness
Now let us consider the correctness of the reduction. First suppose there is an accepting computation

tree T for PSPACE ATMM on inputw , where |w | =m. We must show there is a correct transition

system TS whose executions are contained in the language of the automaton AR described above.

The transition system somewhat resemblesT . It models each alternation inT with a check(turn = 1)

node, branching to simulate a move from either Adam or Eve according to the transitions in T . To
simulate Eve, the system can choose an assignment node labeled by dir := 0 or dir := 1, depending

on the corresponding transition in T . To simulate Adam, the system must go to a sequence of

assignment nodes to read a move decision from the uninterpreted function choice , as in the grammar

reduction. After this, the system is forced (by construction of AR ) to generate correct updates

for each tape cell variable, depending on which transition decision was made. Each choice can be

determined by referring to configurations in the corresponding branches of T . Producing each tape

symbol is accomplished with a sequence of check and assignment nodes. Finally, Since T contains

correct transitions, all of the complete executions for TS resulting from transition correctness

checks will be correct. Similarly, complete executions arising from checking that an ending state

is accepting will also be correct, since the leaves of T are accepting configurations. In the other

direction, given a correct transition systemTS whose complete executions are in L(AR ) and whose

partial executions are in L(AS ), an accepting computation tree T for M on w can be built by

simulating TS (as in the grammar lower bound). Each transition in T will proceed according to the

transition relation forM because TS (which is correct) has executions that assert this. Since TS has

executions that assert the final tape contents constitute accepting configurations, every leaf of T
will indeed be an accepting configuration. Note we have assumed that machineM keeps a counter

to ensure termination in exponential time. Thus no correct TS that satisifes the specification can

go on simulating (without halting) beyond this time bound, since it correctly simulates all machine

transitions. Finally, all executions allowed by AR are easily seen to be coherent.
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F FORMAL DEFINITIONS FOR RECURSIVE PROGRAMS
In this section we present formal definitions for concepts that were sketched informally in Section 9.

Recall that our presentation of recursive programs assumed that the set of all program variables

V = {v1,v2, . . .vr } were the formal parameter of each method and that they were called in the

order ⟨V ⟩ = v1,v2, . . .vr . Names of methods in our programs are from a setM , withm0 being the

main method. Methods return multiple values and for a methodm, om is the order output set of

variables form. Recursive programs are a sequence of method definitions, wherein one can call

other methods, assign values, have conditional branching and loops, long with sequencing. The

formal grammar for programs is given by

⟨pдm⟩M,V ::= m ⇒ om ⟨stmt⟩M,V | ⟨pдm⟩M,V ⟨pдm⟩M,V
⟨stmt⟩M,V ::= skip | x := y | x := f (z) | assume

(
⟨cond⟩V

)
| assert

(
⟨cond⟩V

)
| ⟨stmt⟩M,V ; ⟨stmt⟩M,V | if

(
⟨cond⟩V

)
then ⟨stmt⟩M,V else ⟨stmt⟩M,V

| while
(
⟨cond⟩V

)
⟨stmt⟩M,V | w :=m(⟨V ⟩)

⟨cond⟩V ::= x = y | x , y

Here x ,y, z,w belong to V , and the length of vector w must match the output om . A program is

nothing but a sequence of method definitions, and the main methodm0 is invoked first when the

program is run.

F.1 Executions
The programs in our language have natural call-by-value semantics in a data model that interprets

constants and function symbols. The executions of such programs is a sequence over the alphabet

ΠM,V = {“x := y”, “x := f (z)”, “assume(x = y)”, “assume(x , y)”, “callm”, “z := return” |
x ,y, z, are in V ,m ∈ M}.

The complete executions of a recursive program P form a context-free language defined by the

following grammar. For each methodm ∈ M , we denote by sm the body, written over the grammar

⟨stmt⟩M,V , in the definition ofm. The grammar defining the set of executions, has non-terminals

of the form Xs for each s ∈ ⟨stmt⟩M,V appearing in the program text P . The rules in the grammar

are given by

Xϵ → ϵ
Xskip;s → Xs
Xx :=y ;s → “x := y” · Xs

Xx :=f (z);s → “x := f (z)” · Xs
Xassume(c);s → “assume(c)” · Xs

Xassert(false);s → “assert(false)” · Xs
Xif (c) then s1 else s2; s → “assume(c)” · Xs1;s
Xif (c) then s1 else s2; s → “assume(¬c)” · Xs2;s

Xwhile (c){s1 }; s → “assume(c)” · Xs1; while (c){s1 }; s
Xwhile (c){s1 }; s → “assume(¬c)” · Xs

Xz:=m(⟨V ⟩); s → “callm” · Xsm · “z := return” · Xs

The set of executions of program P , Exec(P) are those accepted by the above grammar with start

symbol Xsm
0
;ϵ . The set of partial executions, denoted by PExec(P), is the set of prefixes of complete

executions in Exec(P).
Observe that all production rules except the one involving method calls are right linear. Further,

we can partition the symbols in ΠM,V in call, return, and internal alphabet — {“call m”} is the

call alphabet, {“z := return”} the return alphabet, and the remaining symbols are the internal
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alphabet. With respect to such a partition, it is easy to see that Exec(P) is a visibly context-free
language [Alur and Madhusudan 2009].

F.2 Recursive Programs as Trees
As in the non-recursive case, we will represent recursive programs as finite trees, and the synthesis

problem reduces to search for a program tree that is coherent, correct, and is generated by the

given grammar G. Therefore, here we describe how we represent recursive programs as trees.

Recall that a recursive program is nothing but a sequence of method definitions. Therefore, our tree

representation of a program will be a binary tree with root labeled “root”, where the right-most

path in the tree will have labels of the form “m ⇒ om”, and the left child of such a node will

be the tree representing the body of the method definition ofm; since method body is nothing

but a program statement, we could use a tree representation very similar to the one used for

non-recursive programs. We give an inductive definition for such a tree. Our description presents

trees as terms with the understanding that ℓ(t1, t2) represent a tree with root labeled ℓ with left and

right sub-trees being t1 and t2, respectively; implicitly ℓ(t) is a tree with label ℓ and left sub-tree
t . With respect to our grammar, programs don’t have a unique parse, since ; is associative. In the

description below, we assume some parsing that resolves this ambiguity. The tree associated with a

program p will be “root”(Tree(p)), where Tree(p) is defined inductively below.

Tree(ϵ) = ϵ Tree(m ⇒ om s p ′) = “m ⇒ om”(Tree(s), Tree(p))
Tree(skip) = “skip” Tree(x :=y) = “x :=y”
Tree(x :=f (z)) = “x :=f (z)” Tree(assume(c)) = “assume(c)”
Tree(s1 ; s2) = “seq”(Tree(s1), Tree(s2)) Tree(if (c) then s1 else s2) = “ite(c)”(Tree(s1), Tree(s2))
Tree(while (c) s) = “while(c)”(Tree(s)) Tree(z :=m(⟨V ⟩)) = “z :=m(⟨V ⟩)”
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