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We investigate the decidability of automatic program verification for programs that manipulate heaps, and in

particular, decision procedures for proving memory safety for them. We extend recent work that identified a

decidable subclass of uninterpreted programs to a class of alias-aware programs that can update maps. We

apply this theory to develop verification algorithms for memory safety— determining if a heap-manipulating

program that allocates and frees memory locations and manipulates heap pointers does not dereference an

unallocated memory location. We show that this problem is decidable when the initial allocated heap forms a

forest data-structure and when programs are streaming-coherent, which intuitively restricts programs to make

a single pass over a data-structure. Our experimental evaluation on a set of library routines that manipulate

forest data-structures shows that common single-pass algorithms on data-structures often fall in the decidable

class, and that our decision procedure is efficient in verifying them.
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1 INTRODUCTION
The problem of automatic (safety) verification is to ascertain whether a program satisfies its as-

sertions on all inputs and on all executions. The standard technique for proving programs correct

involves writing inductive invariants in terms of loop invariants and pre/post conditions, and

proving the resulting verification conditions valid [Floyd 1967; Hoare 1969]. While there has been

tremendous progress in identifying decidable fragments for checking validity of verification condi-

tions (Nelson-Oppen combinations of decidable theories realized by efficient SMT solvers [Bradley
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and Manna 2007]), decidable program verification without annotations has been elusive. Apart

from programs over finite domains, very few natural decidable classes are known.

In a recent paper [Mathur et al. 2019a], a class of uninterpreted programs was identified and

shown to have a decidable verification problem. Uninterpreted programs work over arbitrary data

domains; the domains give meaning to the constants, relations, and functions in the program,

interpreting equality using its natural definition. A program is deemed correct only if it satisfies

its assertions in all executions and for all data domains. The authors show that for a class of

programs that satisfies a coherence condition, verification is decidable. The decision procedure relies

on a streaming congruence closure algorithm realized as automata. The results of [Mathur et al.

2019a] are, however, purely theoretical; there are no general application domains identified where

uninterpreted program verification would be useful, nor is there any implementation.

The goal of this paper is to study completely automated verification for heap-manipulating
programs. When modeling the heap, we can treat pointers as unary uninterpreted functions; this is a
natural modeling choice that does not involve any abstraction (as pointer fields are really arbitrary,

unary functions). Thus, it is reasonable to hope that uninterpreted program verification techniques

could be useful in this setting.

However, there is a fundamental challenge that we need to overcome: heap-manipulating pro-

grams modify heap pointers. With pointers modeled as functions, these programs modify func-

tions/maps. It turns out that the theory of uninterpreted program verification developed in [Mathur

et al. 2019a] is severely inadequate for tackling programs that modify maps.

In this paper, we undertake a fundamental study of verification for programs that have updatable
maps/functions. We then apply this theory to show that checking memory safety of heap-manipulating
programs (where one is given a recursively-described set of allocated locations and asked to check
whether a program only dereferences locations that are within this set) is decidable for a subclass of
programs, and evaluate the algorithms with an implementation and experiments.

1.1 Alias Awareness and the Notion of Congruence for Programs with Updatable Maps
We can think of uninterpreted programs as computating terms using the function and constants

symbols appearing in the code—in the beginning, each variable stores a constant, and after executing

an assignment statement of the form “x := f (y)”, the term stored in x is f (ty ), where ty is the term

stored in y before executing this statement. As the program executes, in addition to computing

terms, it places equality and disequality constraints on the terms it computes (inherited from the

conditionals in if-then-else and while constructs).
However, when the program updatesmaps, this fundamental property, that the program computes

terms, is destroyed. Consider an example where there are two locations pointed to by variables

x and y, but we do not know whether x and y point to the same location or not. If we update a

pointer-field on x and then read the same pointer-field from y into a variable k , we cannot really
associate any term with the variable k , as the term crucially depends on whether x and y were

aliases to the same location or not.

The above is a fundamental problem that wreaks havoc, making program verification essentially

impossible in the presence of updatable maps. The notion of coherence in [Mathur et al. 2019a] fails,

as it crucially relies on this notion of terms. And it cannot be repaired, as the semantic meaning of

the coherence condition fundamentally involves not computing the same term multiple times.

The primary observation, which saves the framework, is to note that the entire problem is due

to not knowing aliasing relationships. We call a program execution alias-aware if, at every point

where it updates a function on the element pointed to by a program variable x , the precise aliasing
relationship between x and all other program variables in scope is determined. More precisely,

when the execution modifies a function/pointer-field of x , for every other program variable z, it

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 35. Publication date: January 2020.



Deciding Memory Safety for Single-Pass Heap-Manipulating Programs 35:3

must either be the case that x is different from z in any data-model/heap or it must be the case that

x is equal to z in all data-models/heaps.

We show that alias-awareness is a panacea for our problems. For alias-aware programs (programs

whose executions are all alias-aware), we show we can associate terms with variables after a

computation that updates maps, and further show that the notion of coherence extends naturally to

programs that update maps. We then show that for coherent alias-aware programs, the verification

problem becomes decidable. These results constitute the first main contribution of the paper.

1.2 Application to Verifying Memory Safety
We then study the application of our framework to verifying memory safety. Our key observation

is that for programs that manipulate forest data-structures (data-structures consisting of disjoint
tree-like structures), programs are naturally alias-aware. Intuitively, when traversing forest data-

structures, aliasing information is implicitly present. For instance, if x points to a location of a

forest data-structure, we know that the location pointed to by x, the one pointed to by the left child

x·left, and the one pointed to by the right child x·right are all different.
In this paper, we define memory safety as follows. A heap-manipulating program starts with a

set of allocated heap locations. During its execution, it dereferences pointers on heap locations,

and allocates and frees locations. A program is memory safe if it never dereferences a location that

is not in the allocated set. The above definition of memory safety captures the usual categories of

memory safety errors such as null-pointer dereferences, use after free, use of uninitialized memory,

illegal freeing of memory, etc. [Hicks 2014]. However, in this paper, we do not consider allocation of

contiguous blocks of arbitrary size of memory (and hence do not handle arrays and buffer overflows

of arrays in languages like C, etc.). Rather, we assume that allocation is done in terms of records of
fixed size (like structs in C), and we disallow pointer arithmetic in our programs.

Our second main contribution of the paper is a technical result that gives an efficient decision

procedure for verifying memory safety for a subclass of imperative heap-manipulating programs,

whose initial allocated heaps are restricted to forest data-structures.

Handling forest data-structures, i.e., disjoint lists and trees, is useful as they are ubiquitous. Note

that we require only the initial heaps to be forest data-structures; the program can execute for

an arbitrarily long time and create cycles/merges as it manipulates the structures. We model the

primitive types and operations on them using uninterpreted functions and relations, similar in

spirit to the way the work in [Mathur et al. 2019a] handles all data. The key insight here is that

this is a reasonable modeling choice, since programs typically do not rely on the semantics of

the primitive data domains in order to assure memory safety (we also show this empirically in

experiments). The salient aspect of our work is that we model the pointers in the heap precisely
using updatable maps, without resorting to any abstraction (classical automatic analysis of heap

programs typically uses abstractions for heaps; for instance, shape analysis involves an abstraction

of the heap locations to a finite abstract domain [Sagiv et al. 1999]).

We allow the user to specify the initial allocated set as the (unbounded) set of locations reachable

from various locations (pointed to by certain program variables) using particular pointer fields,

until a specific set of locations is reached. The memory safety problem is then to check whether

such a program, starting from an arbitrary heap storing a forest data-structure, an arbitrary model

for the primitive types, and with the specified allocated set, dereferences only those locations that

are in the (potentially changing) allocated set, on all executions.

The above problem turns out to be undecidable (a direct consequence from [Mathur et al.

2019a], as even programs that do not manipulate heaps and have simple equality assertions yield

undecidability). The main result of the paper is that for a class of programs called streaming-coherent
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programs, memory safety is decidable. Intuitively, these correspond to programs that traverse the

forest data-structures in a single-pass.

Technical Challenges. The primary challenge is dealing with updatable pointers and updatable
sets (the latter are needed to model the set of allocated locations, which changes during program

execution). As we show in our first set of results, it is crucial for a program to be alias aware. The

fact that our initial data-structures are forests implicitly causes streaming-coherent programs to be

alias aware. When two variables point to locations obtained using different traversals, we know they

cannot alias to each other. Also, for streaming-coherent programs, we can keep track of whether

traversals for any pair of variables are the same, and track their precise aliasing relationships.

The culmination of the ideas above is our result that verification of memory safety for

streaming-coherent programs over forest data-structures is decidable, and is PSPACE-complete. It

is in fact decidable in time that is linear in the size of the program and exponential in the number of

variables. We also show that checking whether a given program is streaming-coherent is decidable

in PSPACE. Note that even checking reachability in programs with Boolean domains has this

complexity, and hence our algorithms are quite efficient.

Evaluation. We implement a prototype of our automata-based decision procedure. This involves

intersecting an automaton that checks whether a given streaming-coherent execution is memory-

safe with an automaton that represents the given program’s executions. Instead of building these

automata and checking emptiness of their intersection, we use an approach that constructs the

automaton and the intersection on-the-fly, hence not paying the worst case costs upfront. We

evaluate our procedure on a class of standard library functions thatmanipulate forest data-structures,

including linked lists and trees, where various other aspects of the data-structures (such as keys,

height, etc.) are modeled using an uninterpreted data domain. These are typically single-pass
algorithms on such data-structures, that take pointers to forest data-structures as input (and may

create non-forest data-structures during computation).

Though we have stringent requirements that programs must meet in order to be in the decidable

class, we show in our experiments that most natural single-pass programs on forest data-structures

meet our requirements. We also show that our tool is able to check if the program falls in the

decidable class, and both verify memory safety and find memory safety errors extremely efficiently.

We emphasize that the novelty of our approach is in building decision procedures for verifying
memory safety without the aid of human-given loop invariants, and without abstracting the heap

domain (the data domain is, however, abstracted using uninterpreted functions). In contrast, there

are several existing techniques that can prove memory safety when given manually written loop
invariants or prove memory safety by abstracting the heap (which can lead to false positives). Our

results hence carve out new ground in memory safety verification and our experiments show that

our approach holds promise for wider applicability and scalability.

In summary, this paper makes the following contributions:

• A notion of alias-aware coherent programs (Section 3), and a result that shows that the

assertion-checking problem for such programs is decidable and PSPACE-complete (Section 4).

• A notion of streaming-coherence and forest data-structures ( Section 5) with an efficient

decision procedure for verifying memory safety for the class of streaming-coherent programs

that dynamically manipulate forest data-structures (Section 6).

• An efficient decision procedure determining if programs are streaming-coherent (Section 6).

• An experimental evaluation ( Section 7) showing (a) common library routines that manipulate

forest data-structures using single-pass traversals are often streaming-coherent, and (b) that

the decision procedures presented in this paper (for checking whether programs satisfy the
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streaming-coherent requirement and for checking whether streaming-coherent programs

are memory safe) are very efficient, both for proving programs correct and finding errors in

incorrect programs.

2 PRELIMINARIES
In this section, we define the syntax and semantics of programs that manipulate heaps and other

relevant concepts useful for presenting the main results of the paper. These are fairly standard and

familiar readers may skip the details.

2.1 Syntax of Heap-Manipulating Programs
The programs we consider are those that manipulate heaps. It is convenient to abstract heap

structures as consisting of two sorts of distinct elements — a sort Loc of memory locations in the

heap, and a sort Data of data values. Field (or map) symbols will model pointers from memory

locations to memory locations or data values. Constants and functions over the data domain will

be used to construct other data values. In this paper, we will not assume any fixed interpretation

for either data values or for functions on data values. In this sense, our programs work over an

uninterpreted data domain. Predicates over data values will be modeled by functions capturing the

characteristic function of the predicate.

Let Loc and Data be the sorts of locations and data respectively. Our vocabulary Σ is a tuple of

the form (CLoc,FLoc,CData,FData,FLoc→Data), where

• CLoc is a set of location constant symbols of sort Loc,
• FLoc is a set of unary location function symbols with sort ‘Loc, Loc’ 1, that models pointers

between heap locations,

• CData denotes the set of data constant symbols of sort Data,
• FData =

⋃
i≥0

Fi where Fr is a set of data function symbols of arity r and sort ‘Datar ,Data’, and

• FLoc→Data is a set of unary location function symbols with sort ‘Loc,Data’, modeling pointers

to data values stored in heap locations.

2.1.1 Program Syntax. Programs will use a finite set of variables to store information — heap

locations and data values — during a computation. Let us fixVLoc = {u1, . . . ,ul } as the set of location
variables and VData = {v1, . . . ,vm} as the set of data variables and let V = VLoc ⊎ VData

2
be the

set of all variables. In addition, our programs manipulate fields associated with location variables.

We will model these fields as second order function variables FldsLoc = {p1, . . . ,pr } (pointers

from locations to locations) and FldsData = {d1, . . . ,ds } (pointers from locations to data), and let

Flds = FldsLoc ∪ FldsData. Taking x ,y ∈ VLoc, p ∈ FldsLoc, d ∈ FldsData, f in FData, a,b ∈ VData, and
c to be a tuple of variables in VData, the syntax of programs is given by the following grammar.

⟨stmt⟩ ::= skip | x := y | x := y·p | y·p := x | a := y·d | y·d := a | alloc(x) | free(x)
| a := b | a := f (c) | assume (⟨cond⟩) | ⟨stmt⟩ ; ⟨stmt⟩

| if (⟨cond⟩) then ⟨stmt⟩ else ⟨stmt⟩ | while (⟨cond⟩) ⟨stmt⟩

⟨cond⟩ ::=x = y | a = b | ⟨cond⟩ ∨ ⟨cond⟩ | ¬⟨cond⟩

Our programs have well-typed assignments to variables using values stored in other variables

(x := y and a := b) or using pointer dereferences from location variables, either to the data

1
We will use the notation σ , τ to indicate a function whose arguments are from sort σ and which returns a value in sort τ .
Thus for example ‘Loc, Loc’ is a function with one argument of sort Loc and which returns an element of sort Loc. On the

other hand, ‘Datar , Data’ denotes functions with r arguments each of sort Data and which returns an element of sort Data.
2
We use A ⊎ B to denote the disjoint union of sets A and B .
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sort (a := y·d) or to the location sort (x := y·p), or using function computations in the data sort

(a := f (c)). Further, programs can update fields (y·d := a or y·p := x), and can dynamically

allocate (alloc(x)) or deallocate (free(x)) memory. In addition, they allow the usual constructs of

imperative programming — empty statements (skip), conditionals (if − then − else) and loops

(while). Conditionals in programs can be Boolean combinations of (well-typed) equality atoms

over location or data variables.

2.2 Program Executions
Executions of programs over Σ and variables V (given by the ⟨stmt⟩ grammar) are finite sequences

over the alphabet Π given below.

Π = {“x := y”, “x := y·p”, “y·p := x”, “a := y·d”, “y·d := a”, “alloc(x)”, “free(x)”, “a := b”,

“a := f (c)”, “assume(x = y)”, “assume(x , y)”, “assume(a = b)”, “assume(a , b)”
| x ,y ∈ VLoc,p ∈ FldsLoc,d ∈ FldsData, f ∈ FDataa,b ∈ VData, and c a tuple over VData}.

The set of executions of a program P , denoted Exec(P) is given by a regular expression, inductively
defined below. We assume that conditionals are in negation normal form where “assume(¬(r = s))”
translates to “assume(r , s)” and “assume(¬(r , s))” translates to “assume(r = s)”.

Exec(skip) = ϵ
Exec(a) = a if a ∈ Π

Exec(assume(c1 ∨ c2)) = Exec(assume(c1)) + Exec(assume(c2)) c1, c2 ∈ ⟨cond⟩
Exec(assume(c1 ∧ c2)) = Exec(assume(c1)) · Exec(assume(c2)) c1, c2 ∈ ⟨cond⟩

Exec(if (c) then s1 else s2) =
Exec(assume(c)) · Exec(s1)
+ Exec(assume(¬c)) · Exec(s2)

c ∈ ⟨cond⟩,
s1, s2 ∈ ⟨stmt⟩

Exec(while (c) s) =
(Exec(assume(c)) · Exec(s))∗
· Exec(assume(¬c))

c ∈ ⟨cond⟩,
s ∈ ⟨stmt⟩

Exec(s1; s2) = Exec(s1) · Exec(s2) s1, s2 ∈ ⟨stmt⟩

The set of partial executions of a program P , denoted PExec(P), is the set of prefixes of its executions.

2.3 Semantics of Executions
The semantics of a heap-manipulating program is given in terms of the behavior of its executions

on heap structures.

2.3.1 Heap Structures. A Σ-heap structure is a tupleM = (ULoc,UData,I), whereULoc is a universe

of locations, UData is a universe of data (ULoc ∩ UData = �) and I is some interpretation of the

various symbols in Σ. In order to faithfully model dynamic memory allocation, we assume that

the set of locations is the disjoint union of a statically allocated set of locations and a countably
infinite set of locations that can be allocated dynamically. That is, we haveULoc = U

static
Loc ⊎U

dynamic
Loc ,

where U
dynamic
Loc = {e0, e1, . . .} is an ordered set of distinguished locations indexed by the set

of natural numbers N. The interpretation I maps every constant c ∈ CLoc to an element from

U static
Loc , every constant in CData to an element from UData, every function symbol f ∈ FLoc to an

element of [ULoc → ULoc], symbol f ∈ FData of arity r to an element of [(UData)
r → UData], and,

f ∈ FLoc→Data to an element of [ULoc → UData]. Further, we assume that the elements in U
dynamic
Loc

cannot be accessed from U static
Loc , i.e., for every f ∈ FLoc, we have ∀e ∈ U static

Loc ,I(f )(e) ∈ U static
Loc .

This ensures that the set of locations reachable by any execution cannot access locations in the

dynamic universe that have not been allocated by the execution. Moreover, for every f ∈ FLoc

and every e ∈ U
dynamic
Loc , we have f (e) = e . Finally, we assume in Σ the presence of a distinguished

constant symbol cdynamic and a distinguished function symbol fdynamic not used in the syntax

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 35. Publication date: January 2020.



Deciding Memory Safety for Single-Pass Heap-Manipulating Programs 35:7

⟨stmt⟩ of programs. We require that for every heap structureM = (U static
Loc ⊎U

dynamic
Loc ,UData,I) the

interpretation function I of M assigns interpretations to these symbols such that I(cdynamic) = e0

and I(fdynamic) ∈ [U
dynamic
Loc → U

dynamic
Loc ] with I(fdynamic)(ei ) = ei+1 for every i ∈ N.

2.3.2 Valuation of Variables and Pointers in an Execution. We assume that corresponding to each

program variable x ∈ V , there is a distinguished constant x̂ ∈ CLoc ⊎ CData of the appropriate sort

denoting the initial value of x . Likewise, each field p ∈ FldsLoc (resp. d ∈ FldsData) is also associated
with a unary function p̂ ∈ FLoc (resp. d̂ ∈ FLoc→Data).

Given an execution σ ∈ Π∗
of a program P ∈ ⟨stmt⟩ and a Σ-heap structureM = (ULoc,UData,I),

the valuation of the program variables and field pointers at the end of σ are defined in terms

of valuation functions ValMLoc : Π∗ × VLoc → ULoc, ValMData : Π∗ × VData → UData, FldsValMLoc :

Π∗ × FldsLoc → [ULoc → ULoc] and FldsValMData : Π∗ × FldsData → [ULoc → UData], which are

presented next. In the following, allocations(σ ) denotes the number of occurrences of statements

of the form “alloc(·)” in σ .

ValMsort(ε,u) = I(û)

ValMsort(σ · s,u) =



ValMsort(σ ,y) if s = “x := y” and u = x

ei if s = “alloc(x)”,
i = allocations(σ ) and u = x

FldsValMsort(σ ,p)(Val
M
Loc(σ ,y)) if s = “x := y·p” and u = x

I(f )(ValMsort(σ , c1), . . . ,Val
M
sort(σ , cr )) if s = “a := f (c1, . . . , cr )”

and u = a

ValMsort(σ ,u) otherwise

FldsValMsort(ε,p) = I(p̂)

FldsValMsort(σ · s,p) =


FldsValMsort(σ ,q)[Val

M
sort(σ ,y) 7→ ValMsort(σ ,x)] if s = “y·q := x”

and p = q

FldsValMsort(σ ,p) otherwise

where by f [a 7→ b] we mean the function д defined as д(a) = b and д(x) = f (x) otherwise,
and the sort symbols are one of {Loc,Data}, appropriately determined according to the program

statement. The expanded definition is provided in the Technical Report [Mathur et al. 2019c].

Feasibility. An execution σ is said to be feasible on M if for every prefix of σ of the form

ρ ′ · “assume(x = y)”, we have ValMsort(ρ
′,x) = ValMsort(ρ

′,y), and for every prefix of σ of the form

ρ ′ · “assume(x , y)”, we have ValMsort(ρ
′,x) , ValMsort(ρ

′,y), where sort ∈ {Loc,Data} is the sort of
both x and y.

3 DEFINING COHERENCE FOR HEAP-MANIPULATING PROGRAMS
In this section we discuss some of the challenges involved in coming up with a reasonable extension

for the notion of coherence as defined in [Mathur et al. 2019a]. A key problem in defining such

an extension, and indeed in generally handling programs with updatable maps, lies in keeping

accurate track of aliasing between variables of the location sort. We will first discuss some examples

that highlight these challenges and proffer a first solution to the problem. Then we will discuss our
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solution more formally by introducing relevant notation and define our notion of alias-aware exe-
cutions and programs that captures the essence of the aliasing problem. Finally, we will discuss the

notion of coherence adapted to the case of heap-manipulating programs.

3.1 The Importance of Being Alias Aware for Programs Updating Maps
Functions and updatable maps cannot be handled uniformly; in particular, the work of [Mathur

et al. 2019a] does not immediately lend itself to handling updatable maps. Let us illustrate this

using the following example.

Example 1. Consider a straight-line program that generates execution π1, where

π1
∆
= z1 := x·next · assume(z1 , z2) · y·next := z2 · z3 := x·next

In the execution above we do not, and in fact cannot, know the value stored in the variable z3
unless we know whether x = y or x , y. In the former case, we will have that z3 = z2, since y
aliases x and, therefore, the update of the next pointer on y will have over-written the value of the

pointer on x. Similarly, in the latter case we will have that z3 = z1, since the pointer update on y
will have no effect on x.

This is a major difference, since in any heap structure on which π1 is feasible, it must be that

z1 , z2. Therefore, whether x and y are aliases of each other can have a drastic effect on the

semantics and feasibility of the execution.

The above example illustrates that aliasing plays a crucial role in the semantics and feasibility of

executions. There is, however, a second (related) issue as well.

Example 2. Consider the executions π2 and π3 where

π2
∆
= π1 · assume(z2 = z3) π3

∆
= π1 · assume(z2 , z3)

As discussed earlier, execution π2 is only feasible in models where x = y and π3 only in models

where x , y where at the end of π1 both kinds of models were feasible. Therefore one can have

implied equalities and disequalities between variables that are only known much later in the

execution. In general, this is hard to keep track of in a streaming setting (which we wish to do in

order to use the underlying ideas in [Mathur et al. 2019a]) and can require an unbounded amount

of memory, as can be seen in the following example.

Example 3. Consider the following execution

π ′
4

∆
=assume(x , NIL) · assume(y , NIL) · z1 := x·next · assume(z1 , z2) · y·next := z2

· z3 := x·next · k1 := x·key · k2 := y·key · k1 := f(k1) · k2 := f(k2) · · · k1 := f(k1) · k2 := f(k2)︸                                                              ︷︷                                                              ︸
n

· assume(z2 = z3) · assume(k1 = k2)

The above execution is feasible, but would require an unbounded amount of memory to reason

as such in a streaming fashion. Next we will see a solution to this aliasing problem that will allow

us to keep track of relationships between variables and the correct semantics of an execution.

3.2 Alias-Aware Executions and Programs
In Section 3.1, we saw that unlike the work of [Mathur et al. 2019a] we cannot define what term (or

value) is computed by a variable. We also observed that the main issue with programs that have

updatable maps is aliasing — i.e., when a pointer or data field is updated on a variable, the update

may also be true for a different variable that aliases the original variable. In this section we identify
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a class of executions, called alias-aware executions, which implicitly resolves any aliasing when

updating the pointer fields on heap locations.

Below, we formally define alias-aware executions. We denote by Heaps(σ ) the set of heap

structures on which the execution σ is feasible.

Definition 1. Let ρ ∈ Π∗
be an execution. ρ is said to be alias-aware if for every prefix of ρ of the

form σ · “x ·h := u” (the sorts of u and h are compatible), and for every location variable y ∈ VLoc,
one of the following hold

• For every heap structure M = (ULoc,UData,I) ∈ Heaps(σ ), ValMLoc(σ ,x) = ValMLoc(σ ,y).
• For every heap structure M = (ULoc,UData,I) ∈ Heaps(σ ), ValMLoc(σ ,x) , ValMLoc(σ ,y).

Intuitively, the above definition says that for an alias-aware execution, at a map update we know

all the relevant aliasing information (even in the uninterpreted sense), because the variables that

alias to the variable on which the update is being performed are the same in every feasible model.

Definition 2 (Alias-Aware programs). A program s ∈ ⟨stmt⟩ is said to be alias-aware if every

execution ρ ∈ Exec(s) is alias-aware.

3.3 Term Computed by a Variable during an Execution
Before we define coherence in our setting, we require the notion of terms that an execution computes.

The notion of terms lets us reason about infinitely many heap structures in a symbolic fashion and

was crucially exploited in [Mathur et al. 2019a] to define coherence and in arguing the correctness

of the decision procedure designed for coherent programs.

We would like to define the term associated with a program variable in an execution. There

are two major challenges in our way. The first challenge is that, in order to accurately determine

the value pointed to by a variable during an execution on a concrete heap structure, one needs to

accurately keep track of the interpretations of pointer fields (that could have, in turn, been updated

earlier in the execution). A similar problem needs to be addressed in order to successfully define

the notion of terms. The second challenge is that unlike in concrete heap structures where two

distinct elements in the heap are known to be unequal, terms do not behave the same way. For the

case of terms, we would like to explore the possibility that two terms that might be syntactically

different might still be semantically equivalent. While this subtlety can be dealt with easily when

none of the functions are updatable, as in [Mathur et al. 2019a], greater care is required in our

setting. Let us first formalize some notation and then elaborate these subtleties.

For a set C of constant symbols and a set F of function symbols from Σ, we use Terms(C,F ) (or

just Terms when the signature is clear) to denote the set of (well-sorted) ground terms constructed

using the constants in C and function symbols in F .

For a binary relation R ⊆ Terms × Terms, the congruence closure of R, denoted �R is the smallest

equivalence relation such that (i) R ⊆�R , and (ii) for every function f of sort w1w2 · · ·wr ,w
(w,wi ∈ {Loc,Data}) and terms t1, t

′
1
, t2, t

′
2
, . . . , tr , t

′
r of sorts w1,w1,w2,w2, . . . ,wr ,wr , we have( r∧

i=1
(ti , t

′
i ) ∈�R

)
=⇒ (f (t1, . . . , tr ), f (t

′
1
, . . . , t ′r )) ∈�R . We say t1 �R t2 if (t1, t2) ∈�R , where t1, t2

are terms.

We now define the terms associated with variables Comp : Π∗ ×V → Terms, the interpretations
of updatable maps on terms corresponding to variables FldsComp : Π∗ × Flds ×V → Terms, and
the set of equalities accumulated by the execution α : Π∗ → P(Terms × Terms). Recall that, in the

following, cdynamic ∈ CLoc and fdynamic ∈ FLoc are special symbols in our vocabulary.
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Comp(ε,u) = û

Comp(σ · s,u) =



Comp(σ ,y) if s = “x := y” and u = x

fidynamic(cdynamic)
if s = “alloc(x)”,
i = allocations(σ ), and u = x

FldsComp(σ ,h,y) if s = “x := y·h” and u = x

f (Comp(σ , z1), . . . ,Comp(σ , zr )) if s = “x := f (z1, . . . , zr )” and u = x

Comp(σ ,u) otherwise

FldsComp(ε,h, z) = ĥ(̂z)

FldsComp(σ · s,h, z) =


Comp(σ ,x)

if s = “y·h := x”

and Comp(σ , z) �α (σ ) Comp(σ ,y)
FldsComp(σ ,h, z) otherwise

α(ε) = �

α(σ · s) =

{
α(σ ) ∪ {(Comp(σ ,x),Comp(σ ,y))} if s = “assume(x = y)”
α(σ ) otherwise

The set of terms computed by an execution σ is the set Terms(σ ) = {Comp(ρ,x) | x ∈

V , ρ is a prefix of σ }.
Let us discuss some aspects of the above definition here. The effect of some of the commands in

the executions is obvious and similar to [Mathur et al. 2019a]. At the beginning of an execution,

each term x ∈ V is associated with a unique constant term x̂ , each pointer h assigns every term t

(of the location sort) to ĥ(t), and the set of equalities accumulated is �. On an assignment “x := y”,
the term stored in x is updated to be that stored in y. On an assignment involving a (non-updatable)

function (x := f (z1, . . . , zr )), the execution computes the term f (t1, . . . , tr ), and stores it in x , where
ti is the term associated with zi before the assignment.

Let us now look at the other commands. Recall that we model our set of dynamically allocated

locations as a disjoint set from the set of statically allocated locations. The term associated with

x after an “alloc(x)” follows this premise. It is built using n applications of a distinct function

fdynamic ∈ FLoc on a distinct constant cdynamic ∈ CLoc, wheren is the number of allocations performed

before this point in the execution. Let us now turn to the most subtle aspect: pointer updates. When

the execution encounters a command of the form “y·h := x”, we need to not only update the term

pointed to by ty ·h (where ty is the term associated with y), we also need to update the term pointed

to by t ·h, when t can be inferred to be equivalent to ty using the equalities α(·) accumulated so far.

Example 4. Consider the following execution.

π5
∆
= assume(x = y) · x·p := z1 · z2 := y·p · assume(z1 , z2)

Here, the terms associated with the pointers x ·p and y·p are p̂(x̂) and p̂(ŷ) respectively. After the
“assume(x = y)”, the locations pointed to by x and y are the same in every heap structure on which

this assumption is valid, and thus the terms corresponding to x and y must be deemed equivalent.
This means that the pointer update x·p := z1 should in fact be reflected in the term associated

with the pointer y·p. The above definition of Comp(·) and FldsComp(·) will, in fact, ensure that

Comp(π5, z1) = Comp(π5, z2). Not doing so will, in turn, not reflect the contradiction due to the

last statement of this execution, which makes it infeasible in every heap structure.
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It turns out that the above definition of terms associated with variables is only a best effort, in
that, it may not accurately summarize all heap structures in which the execution is feasible. The

following example illustrates why this is the case.

Example 5. Let us consider the following, which is a permutation of the execution in Example 4.

π6
∆
= x·p := z1 · z2 := y·p · assume(x = y) · assume(z1 , z2)

Similar to the execution in Example 4, the execution π6 is infeasible in every heap structure. However,
in this case, the terms associated with z1 and z2 will be Comp(π6, z1) = ẑ1 and Comp(π6, z2) = p̂(̂y),
which are not equal, even when considering the equivalence induced due to α(π6) = {(̂x, ŷ)}. As a
result, it is hard to conclude that π6 is an infeasible execution by analyzing the terms associated

with variables alone.

However, for the case of an alias-aware execution (Definition 1), the definition of terms above

indeed accurately relates the terms associated with each variable to their values in every heap

structure that makes the execution feasible. This brings us to the first main result of the paper that

motivates the definition of alias-aware executions. It simply states that the interpretation of the

terms defined above on a given model coincides with the actual values computed on the model.

Theorem 1. Let σ be an alias-aware execution and letM = (ULoc,UData,I) ∈ Heaps(σ ) be a heap
structure on which σ is feasible. Then, I(Comp(σ ,x)) = ValMLoc(σ ,x) for every variable x ∈ VLoc and
I(Comp(σ ,a)) = ValMData(σ ,a) for every a ∈ VData.
Moreover, I(FldsComp(σ ,h,x)) = FldsValMLoc(σ ,h)(Val

M
Loc(σ ,x)) and I(FldsComp(σ ,d,x)) =

FldsValMData(σ ,d)(Val
M
Loc(σ ,x)) for every h ∈ FldsLoc,d ∈ FldsData and x ∈ VLoc.

A gist of the proof of this theorem can be found in the Technical Report [Mathur et al. 2019c].

3.4 Coherent Programs
Having defined the concept of terms associated with variables in an execution, we can now extend

the notion of coherence, adapting it from [Mathur et al. 2019a] to accommodate updatable pointers

as in the heap-manipulating programs that we study.

In the following, we say that s is a superterm of t modulo some congruence relation � if there

are terms s ′ and t ′ such that t � t ′, s ′ is a superterm of t ′ and s ′ � s .

Definition 3 (Coherence). A complete or partial execution σ is said to be a coherent execution if

it satisfies the following two conditions.

Memoizing. Let ρ be a prefix of σ such that it is of the form ρ ′ · “x := y·h” or ρ ′ · “x := f (y)” and
let tx = Comp(ρ,x). If there is a term t ′ ∈ Terms(ρ ′) such that t ′ �α (ρ′) tx , then it must be

the case that there is some variable z ∈ V such that Comp(ρ ′, z) �α (ρ′) tx .
Early Assumes. Let ρ be a prefix of the form ρ ′ · “assume(x = y)” and let tx = Comp(ρ ′,x), ty =

Comp(ρ ′,y). If there is a term t ∈ Terms(ρ ′) such that t is a superterm of tx or ty modulo

�α (ρ′), then there must be some variablew ∈ V such that Comp(ρ ′,w) �α (ρ′) t .

Note that these conditions are applicable to every sort-sensible combination of symbols.

As mentioned earlier, this definition of coherence is inspired from the notion of coherence

defined previously in [Mathur et al. 2019a]. The memoizing restriction is the heart of the notion of

coherent executions. Let us illustrate with a simple example.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 35. Publication date: January 2020.



35:12 U. Mathur, A. Murali, P. Krogmeier, P. Madhusudan, M. Viswanathan

Example 6. Let π7 be the following execution:

π7
∆
= u := f(w) · u := f(u) · · · u := f(u)︸                        ︷︷                        ︸

n

·v := f(w) · v := f(v) · · · v := f(v)︸                        ︷︷                        ︸
n

·assume(u , v)

It is easy to see that in the above execution π7, the values of the variables u and v will be equal

after executing all the 2n + 2 assignments, in any heap structure. As a result of the last assumption

“assume(u , v)”, the execution π7 will thus be infeasible in all heap structures.

However, in order to accurately determine the relationship “u = v” at the end of the execution, one
needs to keep track of an unbounded amount of information (as n can be increased unboundedly).

This is the crucial insight in the first condition (memoizing), which states that when a term has

been computed and dropped (i.e., no variable points to the term), then the execution should not

recompute this term. Indeed, the above execution π7 does not meet this requirement — the execution

computed the term t = f(̂w) in its first half and stored it in u, re-assigned this variable u immediately

after computing t , thereby losing all copies of t , and then later recomputed this term again in its

second half. In fact, each of the terms fi (w) (1 ≤ i < n) have been recomputed without retaining

their original copies. Clearly, π7 is not a coherent execution.

A similar example highlights the importance of the second coherence restriction (early assumes).

Example 7. Let π8 be the following execution:

π8
∆
= u := u0 ·

n︷                        ︸︸                        ︷
u := f(u) · · · u := f(u) ·v := v0 ·

n︷                        ︸︸                        ︷
v := f(v) · · · v := f(v) · assume(u0 = v0)

· assume(u , v)

Observe that this execution is similar to the execution in Example 6. Also observe that, as before,

this execution is infeasible in any heap structure. However, any algorithm that would accurately

determine this in a streaming fashion would require access to unbounded memory.

Definition 4. A program is said to be coherent if all its executions are coherent.

4 ASSERTION CHECKING FOR COHERENT ALIAS-AWARE PROGRAMS
In this section we discuss our first main result — decidability of assertion checking for programs

that are both alias-aware as well as coherent.

Let us first define the problem of assertion checking. For this, we augment our programs with

a special statement ‘assert(false)’, and thus our new syntax is given by the following grammar

(⟨stmt⟩ is as defined in Section 2.1.1).

⟨stmt⟩assert ::= ⟨stmt⟩ | assert(false) | ⟨stmt⟩assert ; ⟨stmt⟩assert

Observe that more complex assertions (including boolean combinations of equality/disequality

assertions) can be expressed by translating them to conditional statements. For example, the

assertion ‘assert(x = y)’ would translate to the program ‘if (x , y) then assert(false) else skip’.
The set of executions for programs with assertions consists of sequences over the alphabet

Πassert = Π ∪ {“assert(false)”} and can be defined as in Section 2.2, with the addition of the

following rule: Exec(assert(false)) = assert(false)
The functions ValMLoc,Val

M
Data, FldsVal

M
Loc and FldsValMData in the presence of “assert(false)” are

defined as before for execution prefixes without “assert(false)”, and can be assumed to map all

elements in their domain to a special symbol ⊥ for all executions containing “assert(false)”. The
feasibility of a partial execution on the alphabet Πassert \ {“assert(false)”} on a heap structure M

is defined as before (Section 2.3) and is undefined otherwise.
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Definition 5 (Assertion Checking for Heap-Manipulating Programs). The problem of assertion

checking for a program s ∈ ⟨stmt⟩assert is to check whether for every heap structure M and for

every partial execution of s of the form σ · “assert(false)”, we have that σ is infeasible on M.

We first note that the above problem is undecidable in general, a direct consequence of [Mathur

et al. 2019a]. Indeed, uninterpreted programs are heap-manipulating programs that do not mention

any heap variables.

Theorem 2. Assertion checking for heap-manipulating programs is undecidable.

Finally, we state our first decidability result. In the following, an alias-aware coherent program

is a program that is both coherent and alias-aware.

Theorem 3 (Decidability of Uninterpreted Assertion Checking). Assertion checking is decidable for
the class of alias-aware coherent programs and is PSPACE-complete.

The proof of the above result relies on the following observations. First, for alias-aware ex-

ecutions, the terms associated with variables reflect their relationships on all heap structures

(Theorem 1). Second, in this case, the streaming congruence closure algorithm for checking feasi-

bility of coherent executions introduced in [Mathur et al. 2019a] can be extended directly to the

case of coherent executions of heap-manipulating programs. The PSPACE-hardness follows from
the PSPACE-hardness result for uninterpreted programs without updates ([Mathur et al. 2019a]).

As a consequence of these observations, we also obtain the following result:

Theorem 4. The problem of checking membership in the class of coherent and alias-aware programs
is decidable and is in PSPACE.

5 MEMORY SAFETY, FOREST DATA-STRUCTURES, AND STREAMING-COHERENCE
We now tackle the problem of memory safety verification for heap-manipulating programs. The goal

here is, given a program and an allocated set of locations (defined using a reachability specification),

to check whether the program only dereferences (using pointer fields) locations that are in the

(dynamically changing) set of allocated locations. We develop a technique for when the initial

heap holds a forest data-structure (disjoint lists and tree-like structures). We define a subclass of

programs, called streaming-coherent, for which memory safety is decidable. The key idea is to

utilize the fact that the initial heap is a forest data-structure in order to make programs alias aware.

For an execution that works over a forest data-structure, one can accurately infer the aliasing

relationship between two program variables by tracking if they point to locations on the heap

obtained by traversing the same path (i.e., starting from the same initial location and taking the

same pointers at each step). Intuitively, in a forest data-structure, two distinct traversals always

lead to different locations. In addition, when the program execution does a single pass over the

data-structure, one can keep track of the aliasing relationship between variables (or equivalently,

whether the locations pointed to by two variables are same or not) using a streaming algorithm.

The notion of streaming-coherence essentially ensures such a single pass. Finally, updatable maps

can be used to keep track of the initial allocated set and the allocations/frees performed by the

program during its execution. Consequently, memory safety can be reduced to assertion checking.

This section is organized as follows. Section 5.1 introduces the reachability specifications that

specify the initial set of allocated locations, and defines the memory safety problem formally. We

also show here that memory safety is undecidable in general, and undecidable even for coherent

programs. Section 5.2 defines the class of forest data-structures, and shows that memory safety

remains undecidable for programs that start with a heap that holds a forest data-structure. Section 5.3

defines the notion of streaming-coherent programs.
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5.1 Reachability Specification and Memory Safety
Reachability Specification. Heap-manipulating programs can be annotated by a reachability

specification that restricts the allowable nodes that can be accessed by a program. A reachability

specification is an indexed set of triples φ = {φk }
n
k=1 where φi = (Starti ,Pointersi , Stopi ) is

such that Startk ⊆ CLoc, Stopk ⊆ CLoc and Pointersk ⊆ FLoc. Each triple φi denotes a set of

locations Reachi , which is the least set that contains Starti , does not include Stopi and is closed

under repeated applications of pointer fields Pointersi . More formally, given a heap structure

M with interpretation I, Reachi gives a set of locations, which is the smallest set such that

(a) {I(c) | c ∈ Starti } \ {I(c) | c ∈ Stopi } ⊆ Reachi , and (b) for every e ∈ Reachi and for every

p ∈ Pointersi , if I(p)(e) < {I(c) | c ∈ Stopi }, then I(p)(e) ∈ Reachi . We let Reachφ =
n⋃
i=1

Reachi .

Often the heap structure M will be implicit and we will omit mentioning it.

Allocated Nodes. Starting with a reachability specification φ on a given heap structure M, an

execution σ defines a set of allocated nodes, which we denote as Alloc(σ ) and define as follows.

Alloc(ε) = Reachφ

Alloc(σ · s) =


Alloc(σ ) ∪ {ValMLoc(σ · s,x)} if s = “alloc(x)”
Alloc(σ ) \ {ValMLoc(σ ,x)} if s = “free(x)”
Alloc(σ ) otherwise

Memory Safety. An execution σ is said to violate memory safety over a heap structureM with

respect to a reachability specification φ if there is a prefix ρ ′ = ρ · s of σ such that ρ is feasible over

M and one of the following holds.

(1) s dereferences a location that was not allocated. That is, s is of the form “w := y·h” or
“y·h := w”, y ∈ VLoc and w and h are variables and pointer fields of appropriate sorts, such

that ValMLoc(ρ,y) < Alloc(ρ).
(2) s frees an unallocated location. That is, s is of the form free(x) and ValMLoc(ρ,x) < Alloc(ρ).

An execution σ is memory safe over M with respect to φ if it does not violate memory safety over

M with respect to φ. With this, we can now define the memory safety verification problem. In the

following, we fix our signature Σ.

Definition 6 (Memory Safety Verification). The memory safety verification problem asks, given a

program P ∈ ⟨stmt⟩ and a reachability specification φ, whether for all heap structures M, each

execution σ ∈ Exec(P) is memory safe over M with respect to φ.

We show, unsurprisingly, that checking memory safety is undecidable in general.

Theorem 5 (Undecidability of Memory Safety). Memory safety verification is undecidable.

Proof. In [Mathur et al. 2019a], the authors consider uninterpreted programs, which are pro-

grams that have variables taking values in a data domain that is uninterpreted; programs in [Mathur

et al. 2019a] don’t have heap variables, and do not modify heaps. It was shown (Theorem 11 in

[Mathur et al. 2019a]) that given an uninterpreted program P , the problem of determining if there

is a data domainM and an execution ρ of P , such that ρ is feasible inM, is undecidable. Our result

here can be proved by a simple reduction from that problem. Let P be an uninterpreted program.

Consider the reachability specification φ = ({x̂}, {p}, {x̂}) such that x ∈ VLoc is a new variable.

Consider program P ′ = P ;y = x ·p. Observe that P ′
is memory safe with respect to φ if and only if

P does not have a feasible execution with respect to some data model. □
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Given the undecidability result in Theorem 5, we need to identify a restricted subclass of programs

and initial heap structures for which the problem of verifying memory safety is decidable. This leads

us to the notions of forest data-structures and streaming-coherent programs. In some sense, forest

data-structures are natural classes of heap structures where the alias-aware restrictions become

very minimal. We combine these remaining restrictions with our usual notion of coherence to

introduce a new notion of streaming-coherent programs. We define these below.

5.2 Forest Data-Structures
Let us now define our characterization of heap structures that will be amenable to our decidability

result. The main restriction is stated in bullet (3) below and intuitively disallows two different paths

to the same location on the heap.

Definition 7 (Forest Data-structures). A heap structureM = (ULoc,UData,I) over a signature Σ is

said to be a forest data-structure with respect to a reachability specification φ = {φk }
n
k=1 if

(1) for every 1 ≤ i ≤ n, each set of stopping locations is a singleton set of the form Stopi =
{stopi },

(2) for every c ∈
n⋃

k=1
Stopk , and for every f ∈ FLoc, we have that I(f (c)) = I(c), and

(3) for every ti ∈ Terms(Starti ,Pointersi ) ∪ Stopi and tj ∈ Terms(Startj ,Pointersj ) ∪ Stopj we
have, if I(ti ) = I(tj ), then either ti = tj ∈ Starti ∩ Startj , or I(ti ) = I(tj ) = I(stopi ) =
I(stopj ).

Intuitively, a heap structure is a forest data-structure with respect to φ, if the subgraphGi induced

by the set of nodes (excluding Stopi ) reachable from Starti , using any number of pointers from

Pointersi forms a tree, and further, any two subgraphs Gi and G j do not have a node in common

(except possibly for the starting locations). Notice that Definition 7 do not impose any restrictions

on the elements of the data sort of a heap structure.

Our notion of forest data-structures handles the aliasing problem while still being able to

express many practical reachability specifications. Consider the following example similar to our

pathological example from Section 3.1.

Example 8. π2 = π ′
2
· assume(z2 = z3) where

π ′
2

∆
= assume(x , NIL) · assume(y , NIL) · z1 := x·next · assume(z1 , z2) · y·next := z2·

z3 := x·next

With respect to forest data-structures the above pathological execution π2 is, in fact, infeasible.

To understand this, observe that for a forest data-structure, if two different locations (x and y in the

execution π2 for instance) are not equal to the stopping location (x , NIL and y , NIL), then these

locations are also different from each other (and thus x , y). This means that in the execution π2,
the update “y·next := z2” will not affect the value of “x·next”. Now, when the execution reads the

value of “x·next” in z3, it is expected to be the same as earlier (i.e., some location as pointed to by

z1), but since z1 , z2, we must have z3 , z2. This means that the last assume assume(z2 = z3)
makes the execution infeasible.

However, the notion of forest data-structures, by itself, is not enough to ensure decidability, as is

shown by the following result.

Theorem 6. The memory safety verification problem for forest data-structures is undecidable.

Proof. Follows trivially from Theorem 5 because the reachability specification φ used in the

proof of Theorem 5 is such that Reachφ is the empty set. □
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Next, we introduce a class of programs called streaming-coherent programs that, in conjunction

with forest data-structures results in a PSPACE decision procedure. We will discuss the decision

procedure in Section 6.

5.3 Streaming-Coherent Executions and Programs
In this section, we identify the class of streaming-coherent programs and executions, for which we

show decidability. It is analogous to the notion of coherence (Definition 3), except that it uses a

different notion of equivalence (for terms) instead of ≡α (·). We define this new notion of equivalence

(forest equality closure) below. Intuitively, this notion characterizes the behavior of executions on

the class of forest data-structures and allows us to adapt the algorithm used for assertion checking

of alias-aware coherent programs (Theorem 3).

Definition 8 (Forest Equality Closure). Let φ = {φi }
n
i=1 be a reachability specification, with

φi = (Starti ,Pointersi , Stopi ). Let Termsi = Terms(Starti ,Pointersi ) (1 ≤ i ≤ n). Let E ⊆ Terms ×
Terms be an equality relation on terms. The forest equality closure of E with respect to φ, denoted
Closure=(φ,E) ⊆ Terms × Terms is the smallest congruence relation that satisfies the following.

• E ⊆ Closure=(φ,E).
• For every ti ∈ Termsi and tj ∈ Termsj such that ti , tj , we have

(ti , tj ) ∈ Closure=(φ,E) =⇒ {(ti , stopi ), (tj , stopj )} ⊆ Closure=(φ,E)

We will now define the notion of streaming-coherent programs with respect to a given reach

specification φ. To do this, we first need the notion of streaming-coherent executions. This notion

is very similar to the notion of coherence (Definition 3) and requires that terms are not recomputed

and that assumes over the data sort are early.

Definition 9 (Streaming-Coherence). Let σ be a complete or partial execution. σ is said to be

streaming-coherent if it satisfies the following two conditions.

Memoizing. Let ρ be a prefix ofσ of the form ρ ′·“x := y·h” or ρ ′·“x := f (y)” and let t = Comp(ρ,x).
If there is a term t ′ ∈ Terms(ρ ′) such that t �Closure=(φ,α (ρ′)) t

′
, then it must be the case that

there is some variable z ∈ V such that Comp(ρ ′, z) �Closure=(φ,α (ρ′)) t . This condition is

applicable to every sort-sensible combination of symbols.

Early Assumes. Let ρ be a prefix of the form ρ ′ · “assume(u = v)” where u,v ∈ VData and

tu = Comp(ρ ′,u), tv = Comp(ρ ′,v). If there is a term t ∈ Terms(ρ ′) such that t is a superterm
of tu or tv modulo �Closure=(φ,α (ρ′)), then there must be some variable w ∈ VData such that

Comp(ρ ′,w) �Closure=(φ,α (ρ′)) t .

Observe that the above definition is close the definition of coherence (Definition 3), but neverthe-

less there are important differences. First, the early assumes requirement does not apply to variables

of the Loc sort because forest data-structures simplify that requirement. Second, the congruence

with respect to which equalities are demanded in the above definition is not one of the congruence

closure defined by the equalities accumulated by the execution (which is the congruence used

in Definition 3), but rather the congruence of forest equality closure.

Definition 10. A program is said to be streaming-coherent with respect to φ if all its executions

are streaming-coherent with respect to φ.

We note here that streaming-coherent programs on forest data-structures are essentially one-
pass algorithms. Intuitively, forest data-structures enforce the alias-aware restriction by mandating

that two locations obtained by two different traversals from the set of initial locations (therefore

being represented by two different terms) are different (with minor exceptions). Therefore if a
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streaming-coherent execution computes a term twice, i.e., visits a location twice, by definition it

has to store a pointer to that location in some variable. Since the number of variables is fixed a
priori, it is simple to see that a nontrivial, multi-pass algorithm such as linked-list sorting would

inherently be non-streaming-coherent (since it is meant to work on lists of arbitrary size).

6 STREAMING CONGRUENCE CLOSURE FOR FOREST DATA-STRUCTURES
We will now focus on streaming-coherent programs whose initial heap is a forest data-structure.

We now present the second main result of our paper.

Theorem7 (Decidability ofMemory Safety for Streaming-Coherent Programs and Forest Data-Stru-

ctures). The memory safety verification problem over forest data-structures for streaming-coherent
programs is decidable and is PSPACE-complete.

Given a reachability specification, we present an algorithm for checking memory safety of such

programs. This will establish the decidability and the membership of the problem in PSPACE. The
hardness follows from the PSPACE-hardness result in [Mathur et al. 2019a].

Our algorithm is automata theoretic— we construct a finite state automaton AMS such that its

language L(AMS) includes all streaming-coherent executions that are memory safe and excludes

all streaming-coherent executions that are not memory safe. Finally, in order to determine if a

given streaming-coherent program P is memory safe, we simply check if Exec(P) ⊆ L(AMS); since

Exec(P) is also a regular language, this reduces to checking intersection of regular languages.

Let us first discuss some intuition for our construction. The state of the automaton has several

components which can be categorized into two groups: (1) those that track feasibility of executions,

and (2) those that are used to check for violations of memory safety. The first category comprises of

three components ≡,d, P which keep track of equalities, disequalities, and functional relationships

between variables at a given point in the execution. These components are inspired by the work

of [Mathur et al. 2019a] in the context of coherent uninterpreted programs, where this information

was used to answer questions of assertion checking/feasibility. Our extended and refined notion

of streaming-coherent programs also has this property, and these three components serve the

same roles in our setting. Similar to the work in [Mathur et al. 2019a], when an execution is

streaming-coherent, these three components ≡,d, P can be accurately maintained at every step in

the execution by performing local congruence closure.
We now describe the remaining components of the state, namely those that help check for

memory safety. We know from our earlier discussion that forest data-structures are implicitly alias

aware. This is because such heap structures consist of many disjoint reachability specifications

each of which describes a tree. Therefore, nodes obtained by different pointer traversals from the

initial locations are different, and each tree in the forest is closed under a given set of pointers. We

keep track of locations (for the purpose of memory safety) primarily using three ordered collections

which are disjoint: (a) a collection Y = {Yi }i of ‘yes’ sets, (b) a collection M = {Mi }i of ‘maybe’

sets and (c) a ‘no’ set N . Each Yi andMi above correspond to the ith reachability specification φi .
In the following, we describe each of these.

N is a set of variables that point to locations which, when dereferenced, lead to a memory safety

violation. These locations include the stopping locations of any of the reachability specifications,

or those locations in the allocated set that have been freed during the execution. Consider the

reachability specificationψ = ({x}, {next}, {NIL}). At the beginning of any execution, the set N
for this specification is {NIL}. Further, when the execution encounters the statement free(y), we
update the N component of the state by adding y.
The sets Yi hold a subset of program variables that point to locations obtained by traversing

the ith reachability specification φi . In particular, a variable z belongs to Yi when we know that
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the corresponding location can be dereferenced without causing a memory safety violation in

any heap structure. This can happen when the execution establishes that the location pointed

to by z is not the stopping location of φi (i.e., stopi ). Consider ψ and the single step execution

σ1 = assume(x , NIL). At the end of σ1 we know that in all heap structures in which σ1 is feasible,
it must be that the location pointed to by x can be dereferenced, and therefore we would add x to

the corresponding ‘yes’ set.

Lastly, the ‘maybe’ setsMi hold variables that can be obtained by traversing the tree of φi , but are
neither known to be stopping locations/freed locations, nor known to be in the allocated set in all

feasible heap structures. Consider againψ and the execution σ2 = assume(x , NIL) · y := x·next.
Recall that x belongs to the ‘yes’ set after the first statement (i.e., the execution σ1) and we can

therefore dereference it. However, at the end of the execution we would include y in the ‘maybe’ set

because the location x·next is not in the allocated set in all feasible heap structures. In particular, a

heap structure defining a list of length one is a feasible structure for this execution but x·nextwould
be NIL, which is not in the allocated set. Now consider the execution σ3 = σ2 · assume(y , NIL).
After the last statement in σ3 we would now shift y from the ‘maybe’ set to the ‘yes’ set.

This is precisely what our automaton does, shifting variables between components and flagging

memory safety violations when the execution dereferences (the location pointed to by) a variable

that is not in any Yi . However, we do this modulo equalities between variables and these sets

described above are in fact sets of equivalence classes. Lastly, we also keep track of variables that

point to locations allocated by “alloc(·)” using a setA of equivalence classes of variables. Of course,

we would transfer an equivalence class from A to N if the execution frees this memory, similar to

what happens to members of the ‘yes’ sets.

6.1 Formal Description of Construction
We shall now proceed with the formal construction of the automaton AMS, which accepts a

streaming-coherent execution iff it is memory safe. Recall that our reachability specification is an

indexed set of tuples φ = {φk }
n
k=1, where φk = (Startk ,Pointersk , Stopk ). To simplify presentation,

we assume that the set of variables V in our programs is such that for every constant c appearing
in the reachability specification φ, there is a variable vc corresponding to c . Further, we assume

that these variables are never overwritten. We will, therefore, often interchangeably refer to these

constants in φ by their corresponding variables, and vice versa. These assumptions can be relaxed

with a more involved construction.

The automaton is a tuple AMS = (Q,q0,δ ), where Q is the set of states, q0 is the initial state and
δ : Q × Π → Q is the transition function. Recall that executions are strings over Π, which is also

the alphabet of the automaton AMS. We describe each of these components below.

States. The automaton has two distinguished states qinfeasible and qunsafe. All other states are
tuples of the form (≡,d, P ,Y ,M,N ,A,X ), where each component is as follows.

• ≡ is an equivalence relation over V that respects sorts. We will use [x]≡ to denote the set

{y | (x ,y) ∈ ≡}

• d is a symmetric set of pairs of the form (c1, c2), where c1, c2 ∈ V /≡ are equivalence classes.

• P associates partial mappings to function symbols in FData and pointer field in Flds =
FldsLoc ∪ FldsData. More formally, for every f ∈ FData of arity r , and classes c1, c2, . . . , cr ∈

VData/≡, we have P(f )(c1, . . . , cr ) ∈ VData/≡ (if defined). Similarly, for every p ∈ FldsLoc,
and every c ∈ VLoc/≡, P(p)(c) ∈ VLoc/≡, and for every d ∈ FldsData, and every c ∈ VLoc/≡,
P(d)(c) ∈ VData/≡. We will say P(h)(c1, . . . , ck ) = undef when the function/pointer symbol h
is not defined on the arguments c1, . . . , ck .

• Y = {Yk }
n
k=1 andM = {Mk }

n
k=1 are indexed collections of sets such that for every 1 ≤ i ≤ n,

we have Yi ,Mi ⊆ VLoc/≡.
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• The sets N ,A andX are sets of equivalence classes of location variables, i.e., N ,A,X ⊆ VLoc/≡.

Initial State. The initial state q0 is the tuple (≡0,d0, P0,Y0,M0,N0,A0,X0) such that

• ≡0 is the identity relation on the set V of variables,

• P0 is such that for all functions and pointer fields f , the range of P(f ) is empty,

• each of d0,A0 and (Y0)1, . . . , (Y0)n are � (empty set),

• for each 1 ≤ i ≤ n, (M0)i = {[v]≡0
| v ∈

⋃n
i=1 Starti },

• N0 = {[v]≡0
| v ∈

⋃n
i=1 Stopi }.

• X0 = {[v]≡0
| v ∈ VLoc} \

(
N0 ∪

⋃n
i=1(M0)i

)
.

Transitions. The states qinfeasible and qunsafe are absorbing states. That is, for every s ∈ Π,
δ (qinfeasible, s) = qinfeasible and δ (qunsafe, s) = qunsafe. In the following, we describe the transition

function for every other state in Q . Let q ∈ Q \ {qinfeasible,qunsafe}, s ∈ Π and let q′ = δ (q, s). Then,
q′ is qinfeasible or qunsafe, or is of the form q′ = (≡′,d ′, P ′,Y ′,M ′,N ′,A′,X ′).

(1) Case s = “u := v”, u,v ∈ V .

In this case, we add the variable u into the class of v and appropriately update each of the

components. That is, ≡′ =
(
≡ \ {(u,u ′), (u ′,u) | u , u ′,u ′ ∈ [u]≡}

)
∪ {(u,v ′), (v ′,u) | v ′ ∈

[v]≡}. The other components of the state are the same as in q.
(2) Case s = “x := y·p”, x ,y ∈ VLoc and p ∈ FldsLoc.

In this case, we need to check if the variable y corresponds to a location that can be derefer-

enced. If not, we have a memory safety violation; otherwise, we establish the relationship

x = p(y) in the next state. Formally, if there is no i such that [y]≡ ∈ Yi and if [y]≡ < A, then
q′ = qunsafe. Otherwise we have that [y]≡ ∈ A or there is a k such that [y]≡ ∈ Yk . In this case

we define the tuple q′ = (≡′,d ′, P ′,Y ′,M ′,N ′,A′,X ′) below. Here, we need to consider the

following cases.

• Case P(p)([y]≡) is defined and equals [z]≡. In this case, q′ is defined in the same manner as

though s = “x := z”.
• Case P(p)([y]≡) = undef. Here, for streaming-coherent programs it must be the case that

[y]≡ ∈ Yk for some k . Here, we create a new singleton equivalence class containing x and

set the value of the p map, on y to be this new class. We also assert that [x]≡′ is not equal

to any class in any of the Yi s or in A. That is,
– ≡′ = ≡ \ {(x ,x ′) | x ′ , x} ∪ {(x ,x)}.

– d ′={([u]≡′, [v]≡′) | u , x ,v , x , ([u]≡, [v]≡) ∈ d} ∪ {([x]≡′, c), (c, [x]≡′) | c ∈ A ∪
n⋃
i=1

Yi }

– P ′(p)([y]≡′) = [x]≡′ . For all other combinations of functions/pointers and arguments, P ′

behaves same as P .
– One of the sets Mk and X are updated depending upon the pointer p. If p ∈ Pointersk ,
thenM ′

k = {[z]≡′ | [z]≡ ∈ Mk } ∪ {[x]≡′}. Otherwise, X = {[z]≡′ | [z]≡ ∈ X } ∪ {[x]≡′}.

– All other components are the same as in q.
(3) Case s = “a := y·d”, a ∈ VData,y ∈ VLoc and d ∈ FldsData.

As in the previous case, q′ = qunsafe if [y]≡ < ∪
n
i=1Yi ∪A. Otherwise, similar to the previous

case, we have two cases to consider. As before, if there is a variable b ∈ VData such that

P(d)([y]≡) = [b]≡, then we treat this case as that of “a := b”. Otherwise, the new equivalence

relation ≡′
is such that ≡′ = ≡ \ {(a,u) | u , a} ∪ {(a,a)}, while the other components are

the same as in q.
(4) Case s = “y·h := u”, y ∈ VLoc.

We uniformly handle the case ofh being either a pointer field (FldsLoc) or a data field (FldsData).
Here we have q′ = qunsafe if [y]≡ < ∪

n
i=1Yi ∪ A. Otherwise, we simply change P as follows

(while keeping other components the same as in q):
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• P ′(f ) = P(f ) for f , h
• P ′(h)([y]≡′) = [u]≡′

• For z ∈ VLoc such that z < [y]≡, P
′(h)([z]≡′) = [w]≡′ if P(h)([z]≡) = [w]≡ for some variable

w , and P ′(h)([z]≡′) = undef if no such variablew exists.

(5) Case s = “a := f (c1, . . . , cr )”, a ∈ VData.
Here, we have two cases to consider again. If there is a variable b ∈ VData such that

P(f )([c1]≡, . . . , [cr ]≡) = [b]≡, then we treat this case as that of “a := b”. Otherwise, we
add a singleton equivalence class containing a and update P(f ), while keeping all other

components the same (modulo the new equivalence relation). Formally,

• ≡′ = ≡ \ {(a,u), (u,a) | u ∈ VData} ∪ {(a,a)}.
• P ′(h) is same as in q if h , f . The evaluation of P ′

on f is described as follows.

P ′(f )([u1]≡′, . . . , [ur ]≡′) =


[a]≡′ if for every 1 ≤ i ≤ r , [ui ]≡ = [ci ]≡ and a , ui

[u]≡′

otherwise if a < {u,u1, . . . ,ur }
and [u]≡ = P(f )([u1]≡, . . . , [ur ]≡)

undef otherwise

• All other components are the same as in q.
(6) Case s = “alloc(x)”.

In this case, we create a new singleton class containing x , and add this class to the component

A. We also assert that this new class is not equal to any other class. Formally,

• ≡′ = ≡ \ {(x ,u) | u ∈ VLoc} ∪ {(x ,x)}.
• d ′ = {([u1]≡′, [u2]≡′) | u1 , u2, ([u1]≡, [u2]≡) ∈ d or u1 = x ∨ u2 = x}
• A′ = {[u]≡′ | [u]≡ ∈ A} ∪ {[x]≡′}.

• The component P is updated as follows. For every function symbol f ∈ FData, P
′(f ) is the

same as P(f ). Further, for every pointer field h ∈ FldsData ∪ FldsLoc and for every variable

y ∈ VLoc \ {x}, we have P
′(h)([y]≡′) = P(h)([y]≡). Finally, the mapping on x is defined as

P(p)([x]≡′) = [x]≡′ for every location pointer p ∈ FldsLoc and P(d)([x]≡′) = undef for every
data pointer d ∈ FldsData.

• All other components are updated as usual.

(7) Case s = “free(x)”.

In this case, if [x]≡ < A ∪
n⋃
i=1

Yi , then q
′ = qunsafe. Otherwise, we remove the class [x]≡ from

the sets A or Y1, . . . ,Yn and add it to the set N . That is,

• ≡′ = ≡

• N ′ = {[z]≡′ | [z]≡ ∈ N } ∪ {[x]≡′}

• for every 1 ≤ i ≤ n, Y ′
i = {[z]≡′ | [z]≡ , [x]≡, [z]≡ ∈ Yi }

• A = {[z]≡′ | [z]≡ , [x]≡, [z]≡ ∈ A}
• Other components remain the same.

(8) Case s = “assume(x = y)”, x ,y ∈ VLoc. In this case, if [x]≡ = [y]≡ then q′ = q. Otherwise
we have several cases to consider.

In each of these cases, we construct a new tuple q′′ = (≡′′,d ′′, P ′′,Y ′′,N ′′,M ′′,A′′,X ′′).

Finally, we set q′ = q′′ if d ′′ ∩ ≡′′ = �; otherwise we have q′ = qinfeasible.

• The first case to consider is when {[x]≡, [y]≡} ∩
n⋃
i=1

Mi = �. In this case, we merge [x]≡

and [y]≡. More formally, ≡′′
is the smallest equivalence relation such that

(
≡ ∪ {(x ,y)}

)
⊆

≡′′
. Further, for every component C ∈ {X ,A,N } ∪

n⋃
i=1

{Yi ,Mi } with the corresponding

component in q′′ beingC ′′
, and for every z ∈ VLoc such that z < [x]≡∪[y]≡, we have [z]≡′′ ∈
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C ′′
iff [z]≡ ∈ C . For a variable z ∈ [x]≡ ∪ [y]≡, we have [z]≡′′ ∈ C ′′

iff {[x]≡, [y]≡} ∩C , �.

The other components of q′′ are the same as in q (modulo the new equivalence classes).

• Otherwise, consider the case when [x]≡ ∈ Mi for some i . In this case, in addition to

adding {(x ,y)} we also add the pair {(x , stopi )}. Similarly if [y]≡ ∈ Mj for some j we
add {(y, stopj )}. Construct the state q

′′
with ≡′′

being the smallest equivalence relation

including these new pairs (and other components remaining the same).

(9) Case s = “assume(x , y)”, x ,y ∈ VLoc. Similarly as above, in this case when ([x]≡, [y]≡) ∈ d
we have q′ = q. If [x]≡ = [y]≡ then q′ = qinfeasible. Otherwise, we have the following cases:

• [x]≡ = [stopi ]≡ and [y]≡ ∈ Mi for some i (or vice versa). In this case, we simply put the

equivalence class of y into Yi and assert that [y]≡ is unequal to all other classes. More

formally, ≡′ = ≡, Y ′
i = Yi ∪ {[y]≡} d

′ = d ∪ {([y]≡, [z]≡), ([z]≡, [y]≡) | z < [y]≡}. The other
components remain the same.

• Otherwise, we simply update d ′ = d ∪ {([x]≡, [y]≡)}; all other components are the same.

(10) Case s = “assume(a = b)”, a,b ∈ VData. In this case, wemerge equivalence classes repeatedly

and perform a ‘local congruence closure’. We construct a stateq′′ to determine if the transition

must be to qinfeasible. More formally, we define the state q′′ with the ≡′′
component as the

smallest equivalence relation such that: (a) ≡ ∪ (a,b) ⊆ ≡′′
(b) If (ui ,vi ) ∈ ≡ for 1 ≤ i ≤ r

and [w]≡′′ = f ([u1]≡′′ . . . , [ur ]≡′′), [w ′]≡′′ = f ([v1]≡′′ . . . , [vr ]≡′′) then (w,w ′) ∈ ≡′′
.

The other components remain the same. In particular, it is correct to retain the P component

since the above construction is a congruence relation. Finally, if there exist u,v ∈ VData such
that (u,v) ∈ ≡′′

and ([u]≡′′, [v]≡′′) ∈ d ′′
then q′ = qinfeasible. Otherwise, q

′ = q′′.
(11) Case s = “assume(a , b)”, a,b ∈ VData. Similarly as above, if [a]≡ = [b]≡ then q′ = qinfeasible.

Otherwise, we update d ′ = d ∪ {([a]≡, [b]≡)} and all other components remain the same.

The following theorem states the correctness of the automaton AMS.

Lemma 8. Let σ be a streaming-coherent execution and let φ be a reachability specification and

let q be the state of the automaton AMS after reading σ . Then, q = qunsafe iff there is a forest

data-structure M (with respect to φ) such that σ violates memory safety onM.

The problem of checking if a streaming-coherent program is memory safe against a given

specification is decided as follows. Recall that the set of executions of a given program P constitutes

a regular language Exec(P). Let L(AMS) be the set of executions σ ∈ Π∗
that do not go to the state

qunsafe. Then, the problem of checking if P is memory safe reduces to checking if Exec(P) ⊆ L(AMS).

Next, we show that the problem of checking streaming-coherence is also decidable. To address

the problem of checking streaming-coherence, we construct an automatonAcheckSC similar toAMS
(similar to the automaton for checking coherence in [Mathur et al. 2019a]) that keeps track of the

following information. For every function/pointer f of arity r , and for every tuple (x1, . . . ,xr ) of
variables (of appropriate sorts), each state of the automatonAcheckSC maintains a boolean predicate

denoting whether or not f (x1, . . . ,xr ) has been computed in any execution that reaches the state.

This gives us our next result.

Theorem 9. The problem of checking whether a given program is streaming-coherent with respect to
a given reach specification defining a forest data-structure is decidable in PSPACE.

7 IMPLEMENTATION AND EVALUATION
We implemented a tool [Mathur et al. 2019d] for deciding memory safety of forest data-structures

based on the construction from Section 6. The tool is ~2000 lines of Ocaml 4.07.0 code. It takes

as input a program from the grammar presented in Section 2.1.1 annotated with a reachability

specification, as in Section 5.1. The tool does not explicitly construct the automaton from Section 6.
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Instead, it implements a fixpoint algorithm, described below, which determines the set of states

associated with every program point, and uses this set to check for memory safety.

7.1 Fixpoint Algorithm
Here we give a high-level description of the implementation. First, observe that AMS has ex-

ponentially many states in the number of program variables.We manage this by implementing

the transition δ from Section 6 and only building automaton states as they are encountered. For

straight-line programs, each transition results in a single new state. For complex programs that use

if-then-else and while statements, we need to keep track of a bag of states. To see this, suppose

we are checking the program if (c) then s1 else s2. To begin our bag of states contains only the

initial state q0. In order to process the if-then-else, the initial state needs to make two separate

transitions, one for each of the two executions generated by the two branches. The bag of states

thus grows to include sthen = δ (q0, “assume(c)”) and selse = δ (q0, “assume(¬c)”). The branches
can then take transitions starting from sthen and selse. The union of the reachable states from each

branch gives us a new bag of states from which to process the remaining program. The intuition

for if-then-else carries over to while. From any state in our bag at the beginning of a while, we
collect the bag of states that results from any number of executions of the loop guard and body,

starting from that state. The number of states |AMS | is finite, and thus a fixed point is guaranteed.

For the benchmarks considered here, the number of states explored by the tool is significantly

smaller than the worst case.

If at any point the tool detects a memory safety violation it halts and reports the error. In

addition to memory safety, it also monitors the streaming-coherence property as it processes the

input program. To do so, it keeps track of terms that were computed using existing equivalence

classes, but which were subsequently dropped. If the program attempts to compute the same term

using the same classes, the implementation flags a failure of streaming-coherence and halts. For

example, to process “a := f (c)”, the tool checks that f was not previously applied to [c]≡ and later

dropped. In general, this information can be maintained by remembering the equivalence classes

[c1]≡, . . . , [cr ]≡ on which any function f (of arity r ) has been computed.

The algorithm implemented by the tool is more general than we have described thus far. It

can output the set of states reached at the head of a loop. By interpreting individual states as

conjunctions of equality and disequality, and the set of states as a disjunction of such conjuncts, we

can obtain an inductive invariant that proves memory safety (when the program is memory safe).

Any assertion in the form of a Boolean combination of equality statements on program variables

can also be checked. This can be accomplished by appending the negated assertion to the end of

the program and checking that all reachable states are infeasible.

7.2 Benchmarks
We seek to answer the following basic questions about streaming-coherent programs and our

algorithm. First, is it the case that the most natural way to write heap-manipulating single-pass

programs on lists and trees results in streaming-coherence? Second, for streaming-coherent pro-

grams with and without memory safety violations, is the algorithm able to verify memory safety or

find violations of it in the corresponding uninterpreted program? Third, how fast is the algorithm?

Note that since we do abstract the primitive types and functions/relations on real programs, it is

not clear that the tool will be able to prove memory safe programs as so.

To answer the first and second questions, we wrote natural heap-manipulating programs over

singly-linked lists (sorted and unsorted) and tree data-structures (binary search trees, AVL trees,

rotations of trees) in our input language, and evaluated the tool on them to determine if they were

streaming-coherentand to test for memory safety.
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Table 1. Evaluation of tool for proving memory safety and finding memory safety errors

Program LOC Streaming- Found # States Time

coherent? Safe (ms)

Verification of Memory Safe Programs
sll-append-safe 19 yes ✓ 4 4

sll-copy-all-safe 27 yes ✓ 6 3

sll-delete-all-safe 56 yes ✓ 58 9

sll-deletebetween-safe 42 yes ✓ 53 8

sll-find-safe 16 yes ✓ 4 3

sll-insert-back-safe 20 yes ✓ 3 3

sll-insert-front-safe 8 yes ✓ 1 3

sll-insert-safe 50 yes ✓ 12 4

sll-reverse-safe 12 yes ✓ 3 3

sll-sorted-concat-safe 17 yes ✓ 4 3

sll-sorted-insert-safe 50 yes ✓ 12 4

sll-sorted-merge-safe 74 yes ✓ 62 8

bst-find-safe 23 yes ✓ 21 4

bst-insert-safe 45 yes ✓ 29 6

bst-remove-root-safe 52 yes ✓ 12 4

avl-balance-safe 190 yes ✓ 48 12

tree-rotate-left-safe 25 yes ✓ 3 3

Finding Errors in Memory-unsafe Programs
sll-append-unsafe 20 yes ✗ — 3

sll-copy-all-unsafe 29 yes ✗ — 4

sll-delete-all-unsafe 58 yes ✗ — 5

sll-deletebetween-unsafe 44 yes ✗ — 4

sll-find-unsafe 18 yes ✗ — 3

sll-insert-back-unsafe 20 yes ✗ — 3

sll-insert-front-unsafe 9 yes ✗ — 3

sll-insert-unsafe 50 yes ✗ — 3

sll-reverse-unsafe 12 yes ✗ — 3

sll-sorted-concat-unsafe 17 yes ✗ — 3

sll-sorted-insert-unsafe 50 yes ✗ — 3

sll-sorted-merge-unsafe-1 69 yes ✗ — 4

sll-sorted-merge-unsafe-2 63 yes ✗ — 3

bst-find-unsafe 25 yes ✗ — 4

bst-insert-unsafe 49 yes ✗ — 6

bst-remove-root-unsafe 54 yes ✗ — 3

avl-balance-unsafe 111 yes ✗ — 3

tree-rotate-left-unsafe 20 yes ✗ — 3

Detecting Programs are not
streaming-coherent
sll-sorted-merge-non-streaming-coherent 75 no — — 4

bst-remove-root-non-streaming-coherent 55 no — — 3

The first column of Table 1 gives the set of programs in our benchmark. These are typically

single-pass algorithms over an input data-structure. For example, finding a key in a binary search

tree or in-place reversal of a linked list are single pass algorithms.

The names of the programs indicate whether or not the program truly contains an unsafe memory

access (i.e., the ground truth). Programs whose names end in ‘unsafe’ were obtained by introducing
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one of two possible memory safety errors into their ‘safe’ counterparts: (i) attempts to read or write

to a location that is unallocated, and (ii) freeing unallocated memory locations.

One example of the first kind is illustrated in sll-copy-all, which copies the contents of a linked

list into a freshly allocated list. In this example, the program steps through the input list in a loop

until it reaches NIL. In each iteration, a new node is allocated, initialized with the contents of the

current node, and connected to the end of the new list. The program relies on the invariant that

the new list has a next node to step to whenever the old list does. Thus, it does not perform a

NIL check when advancing along the next pointer for the new list. The sll-copy-all-unsafe fails to
maintain the invariant by incorrectly adding the freshly allocated node to the new list. An example

for errors of the second kind (freeing memory locations that may not be allocated) can be found in

sll-deletebetween-unsafe. In this example, the task is to delete all nodes in a linked list that have

key values in a certain range. The mistake in this example happens when the program has found a

node to delete, but, instead of saving the next node and deleting the current node, it instead frees

the next node, which may be unallocated.

7.3 Discussion of Results
Table 1 shows the results for the evaluation, which was performed on a machine running Ubuntu

18.04 with an Intel i7 processor at 2.6 GHz. Columns 3-6 pertain to the operation of the algorithm on

the benchmarks. Column 3 indicateswhether or not the benchmark fails the streaming-coherence co-

ndition. Our tool terminates and identifies memory safety and violation of memory safety on all

streaming-coherent programs. Column 4 depicts whether or not an unsafe memory access was

detected. Column 5 gives the total number of states that are reachable at the end of the program.

Note that non-streaming-coherence and violation of memory safety preclude each other in the

table. Upon detecting either, the algorithm halts (and we do not report the number of reachable

states). Column 6 gives the total running time of the tool on each benchmark, which is negligible in

all cases. Note that the number of reachable states for each example is also quite small relative to

the total number of possible states, which grows faster than the Bell numbers. That our algorithm

only examines a small fraction of the total state space is encouraging, and suggests that it may

scale well for much larger and more complex programs.

8 RELATEDWORK
Memory safety errors have attracted a lot of attention because they are serious security vulnerabil-

ities that have been exploited to attack systems [Nagarakatte et al. 2015; Szekeres et al. 2013]; they

are one of the most common causes of security bugs [Microsoft 2019]. Memory safety concerns

have even led to new programming languages, such as Rust [The Rust Team 2019], that statically

assure memory safety (while being efficient). Memory safety vulnerabilities of programs written

in C/C++ are still of great concern, and, consequently, identifying fundamental techniques that

establish decidability of the problem even for restricted classes of programs is interesting.

There is a rich literature of preventing memory safety errors at runtime by instrumenting code

with runtime checks, or at compile time (see [Nagarakatte et al. 2015] and references therein,

SafeC [Safe-C 2019], CCured [Austin et al. 1994; Condit et al. 2003; Necula et al. 2005, 2002],

Cyclone [Jim et al. 2002], SVA [Criswell et al. 2007], etc.). Static checking for memory safety

is certainly possible when it is part of language design (for instance, using type systems as in

Rust [Matsakis and Klock 2014]). Dynamic analysis techniques as in [Nethercote and Seward 2007;

Rosu et al. 2009; Serebryany et al. 2012] instrument program executables and report errors as they

occur during program execution. Recently, there has also been emerging interest in enforcing

runtime memory safety using hardware and software support for tagged memory [Joannou et al.

2017; lowRISC 2019; Oleksenko et al. 2018; Serebryany et al. 2018; Watson et al. 2015].
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This work stems from the recent decidability result on uninterpreted coherent programs [Mathur

et al. 2019a], which has also been extended to incorporate reasoning modulo theories including

associativity and commutativity of functions over the data domain and ordering relations on the

data domain [Mathur et al. 2019b]. In our work we use automata-theoretic techniques that, over the

data domain, reason about equality and function computation over the data elements. Further, for

checking memory safety, our procedure tracks a subset of the allocated nodes, namely, the frontier
nodes. While a considerable portion of the literature on assertion checking and memory safety

for heap-manipulating programs is devoted to techniques that compromise on either soundness,

completeness, or decidability, there has been some work that aims at decidable reasoning, while

still preserving some form of soundness and completeness.

The work in [Alur and Černý 2011] reduces assertion checking of single-pass list-processing

programs to questions on data string transducers that work over sequences of tagged data values.

The decidablity is mainly a consequence of the fact that there is a single variable that advances in a

single-pass fashion. In contrast, our work defines a more general notion of single-pass programs

using the streaming-coherence restriction that still allows for multiple variables to support pointer

updates. Further, the work in [Alur and Černý 2011] does not directly apply to verifying memory

safety of programs as it does not explicitly handle freeing of memory locations, and the operations

of the transducer cannot effect changes to the shape of the heap. Another key difference is that

streaming data string transducers only allow reasoning about ordering and equality over data but

cannot support more complex reasoning such as the congruence arising from function computation.

The work in [Bouajjani et al. 2006] proposes a class of list programs for which verification

is decidable, and crucially relies on the idea of representing fragments of the allocated heap by

a bounded number of segments and summaries about them, which is one among many other

works [Balaban et al. 2005; Bardin et al. 2004; Berdine et al. 2004; Dor et al. 2000; Manevich et al.

2005; Sagiv et al. 1999] that employ a similar approach. These works can handle limited reasoning

with data such as total orders on the data domain, but again, do not support predicates like equality

on data or function congruences resulting from equalities, and further, often address questions

specific to lists. Our work, on the other hand, tackles the more general problem of the verification

of uninterpreted heap programs and instantiates the alias-aware condition to the class of forest

data-structures. The key idea of tracking the frontier heap locations, which we use for obtaining

decidability of streaming-coherent programs, appears orthogonal to this line of work.

The work in [Bozga and Iosif 2007] differs fundamentally from ours in that pointer updates are

forbidden, which is a salient feature of our work. Pointer updates are at the heart of the difficulty in

building a theory of uninterpreted programs working over heaps. Additionally, that work forbids

nesting of loops as well as conditionals within loops, a restriction also used to obtain decidability

in earlier work [Godoy and Tiwari 2009] on uninterpreted programs; there is no such syntactic

restriction on the class of programs we introduce in this paper.

The work in [Bouajjani et al. 2005] over-approximates the set of heap configurations associated

with a given program location as a regular language over a finite alphabet. The program transforma-

tions are represented by finite state transducers, and the work employs an abstraction refinement

approach for verifying heap-manipulating programs. Since such abstraction refinement loops

may not always terminate for arbitrary programs, the proposed approach is only a semi-decision

procedure. Further, this work does not support reasoning over the data sort. Other notable static

analyses that employ abstraction refinement for verifying heap programs include the notable work

on shape analysis [Lev-Ami and Sagiv 2000; Sagiv et al. 1999; Yahav 2001] and automatic predicate

abstraction [Ball et al. 2001]. Statically verifying memory safety using such incomplete techniques

can of course, and commonly does, result in false positives.
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There is a rich literature on program logics for heap verification; in particular separation log-

ics [O’Hearn et al. 2001; Reynolds 2002] and FO logics based on the principles of separation

logic [Løding et al. 2019]. Decidable fragments of such logics have also been studied [Berdine et al.

2004, 2006; Cook et al. 2011; Møller and Schwartzbach 2001; Navarro Pérez and Rybalchenko 2011,

2013; Piskac et al. 2013, 2014a,b]. However, typically, these decision procedures are for checking

validity of Hoare triples, and the problem of generating loop invariants is often undecidable, as

is the problem of completely automatic verification of programs against specifications expressed

in these logics. Some invariant generation techniques have been discovered for problems in this

domain [Calcagno et al. 2011; Neider et al. 2018], but are, of course, inherently incomplete.

9 CONCLUSIONS AND FUTUREWORK
This paper establishes a foundational result for decidably verifying assertions in programs that

update maps for a subclass that is alias-aware and coherent. We have used this general result to

develop decidable verification of memory safety for a class of programs, called streaming-coherent

programs, working on forest data-structures. We also proved membership of programs in this

class is decidable. We showed through a prototype implementation of our decision procedure, and

its evaluation on a set of single-pass algorithms, that forest data-structures typically fall in our

decidable class, and that we can verify memory safety accurately for them.

The most compelling future direction is to adapt the technique in this paper to provide a memory

safety analysis tool for a standard programming language (such as C/C++), handling the rest of the

programming language using abstractions (e.g., arrays, allocation of varying blocks of memory, etc.).

We believe that our automata-based algorithm will scale well. Realizing the techniques presented

herein in a full-fledged memory safety analysis tool would be interesting.

On the theoretical front, there are several interesting directions. First, we could ask how to

generalize our results to go beyond streaming-coherent programs on forest data-structures. Al-

though forest data-structures are fairly common as initial heaps for many programs, finding a

natural class of heap structures beyond forest data-structures where alias-awareness can be easily

established seems an interesting, challenging problem. We believe that data-structures such as

doubly-linked lists and trees with parent pointers, and more generally, data-structures that have

bounded tree-width with uniform tree decompositions may be amenable to our technique. Tackling

multi-pass algorithms on forest data-structures is also an interesting open direction. We believe the

best way to look at our work in a larger verification context is that single-pass streaming-coherent

programs are the new basic blocks that can be completely automatically analyzed, despite the fact

that they contain loops. Putting these blocks together to handle programs with multiple passes

over data-structures, even in an incomplete fashion, is an interesting future direction.

Another dimension for exploration is to consider more general post-conditions that can be

proved automatically and that go beyond simple assertions. One of the limitations of our work is

that, though we have an implicit precondition that demands that data-structures are forests, we do

not establish that the data-structure in the post state is also a forest. The ability to establish such

a property will allow us to maintain the forest property of data-structures as an invariant across

multiple calls from clients that manipulate a data-structure using a library of methods, by showing

that each of the methods provably maintains this invariant.
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