
Languages with Decidable Learning: A Meta-theorem
∗

PAUL KROGMEIER, University of Illinois, Urbana-Champaign, USA
P. MADHUSUDAN, University of Illinois, Urbana-Champaign, USA

We study expression learning problems with syntactic restrictions and introduce the class of finite-aspect
checkable languages to characterize symbolic languages that admit decidable learning. The semantics of such
languages can be defined using a bounded amount of auxiliary information that is independent of expression
size but depends on a fixed structure over which evaluation occurs. We introduce a generic programming
language for writing programs that evaluate expression syntax trees, and we give a meta-theorem that
connects such programs for finite-aspect checkable languages to finite tree automata, which allows us to
derive new decidable learning results and decision procedures for several expression learning problems by
writing programs in the programming language.

CCS Concepts: • Theory of computation → Tree languages; Logic and verification; • Computing method-
ologies → Machine learning approaches.

Additional Key Words and Phrases: exact learning, learning symbolic languages, tree automata, version space
algebra, program synthesis, interpretable learning

ACM Reference Format:
Paul Krogmeier and P. Madhusudan. 2023. Languages with Decidable Learning: A Meta-theorem. Proc. ACM
Program. Lang. 7, OOPSLA1 (April 2023), 37 pages. https://doi.org/10.1145/3586032

1 INTRODUCTION

We undertake a foundational theoretical exploration of the exact learning problem for symbolic
languages with rich semantics. Learning symbolic concepts from data has myriad applications,
e.g., in verification [Garg et al. 2014, 2015; Ivanov et al. 2021; Neider et al. 2020; Zhu et al. 2018]
and, in particular, invariant synthesis for distributed protocols [Hance et al. 2021; Koenig et al.
2020, 2022; Yao et al. 2021], learning properties of programs [Astorga et al. 2019, 2021; Miltner et al.
2020], explaining executions of distributed protocols [Neider and Gavran 2018], and synthesizing
programs from examples or specifications [Alur et al. 2015; Evans and Grefenstette 2018; Gulwani
2011; Handa and Rinard 2020; Muggleton et al. 2014; Polozov and Gulwani 2015; Solar-Lezama et al.
2006; Wang et al. 2017a,b].

In this paper, symbolic languages are construed as sets of expressions together with formal syntax
and semantics. Languages include logics, e.g., first-order and modal logics, programming languages
(functional or imperative), query languages like SQL, or even languages whose expressions describe
other kinds of languages, e.g., regular expressions or context-free grammars. In the exact learning
problem for a language ℒ, the goal is to find an expression 𝑒 ∈ ℒ that is consistent with a given
finite set of (positively and negatively) labeled examples, which in this setting are finite structures.
The expression 𝑒 should be satisfied by all positive structures and not satisfied by any negative
ones. The semantic notion, i.e. satisfaction, varies by problem.
Decidable Learning. The languages we study are complex enough that polynomial time learning is
seldom possible (even learning the simplest Boolean formula that separates a labeled set of Boolean
assignments to variables is not possible in polynomial time [Kearns andVazirani 1994]). Furthermore,
assuming the semantics of expressions over structures is computable (true in all languages we
∗Version with appendix.

© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3586032.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

ar
X

iv
:2

30
2.

05
74

1v
2

 [
cs

.L
O

]
 2

0
M

ar
 2

02
3

https://doi.org/10.1145/3586032
https://doi.org/10.1145/3586032

2 P. Krogmeier, P. Madhusudan

consider), there is always a trivial algorithm that enumerates expressions, evaluates them over the
given structures, and finds a consistent expression if one exists. Given that enumeration can take
exponential time in the size of the smallest consistent expression to terminate (if it terminates at all),
and given any learning algorithm may require exponential time, a meaningful theoretical analysis
of learning for such languages is hard. We hence consider decidable learning, where hypothesis
classes are infinite and learning algorithms must terminate with a consistent expression if one
exists or report there is none. Note the trivial enumerator is not a decision procedure when there
are infinitely-many expressions, since it may not be able to report an instance has no solution.
Learning under Syntactic Restrictions. We require learning algorithms to both accommodate
syntactic restrictions over the language, i.e., restrictions to the hypothesis space, and to be able to
find small expressions. These stipulations mitigate overfitting. For instance, in the case of some
logics, the set of positively-labeled structures can be precisely captured using a single formula that
can be computed efficiently given the structures. Such a solution is not interesting and is unlikely
to generalize. In such cases, learning also becomes trivially decidable: if there is any consistent
expression, then the highly specific one will be consistent. Accommodating syntactic restrictions
and requiring small solutions circumvent these issues. Note also that syntactic restrictions are a
feature— one can always allow expressions to be learned from the entire language.
Learning in Finite-Variable Logics. Our work draws inspiration from a recent result that showed
classical logics, e.g., first-order logic (FO), have decidable learning when restricted to use finitely-
many variables [Krogmeier and Madhusudan 2022]. The technique underlying this result uses
tree automata. For each positively-labeled (respectively negatively-labeled) structure, one builds
a tree automaton that reads expression syntax trees and accepts those that are true (respectively
false) in that structure. Such automata are akin to version space algebras [Mitchell 1997], and taking
their product (and a product with an automaton capturing the syntactic restriction) results in
an automaton that accepts all consistent expressions. Existence of solutions can be decided with
automata emptiness algorithms, which can be used to synthesize small consistent expressions if
they exist.
Contributions. We show that the tree automata-theoretic technique for learning extends much
beyond finite-variable logics. We prove decidable learning for a number of languages that are not
finite-variable logics, and we give a meta-theorem that streamlines the task of proving decidable
learning for new languages. It reduces proofs to the problem of writing an interpreter for the
semantics in a particular programming language, which we call Facet. Using this meta-theorem,
we exhibit a rich set of examples that have decidable learning:

• Modal logic over Kripke structures (Section 2 and Section 4.4)
• Computation tree logic over Kripke structures (Section 4.4)1
• Regular expressions over finite words (Section 5)
• Linear temporal logic over periodic words (Section 6)
• Context-free grammars over finite words (Section 7)
• First-order queries over tuples of rationals numbers with order (Section 8)
• String transformations from input-output examples (Section 9), similar to [Gulwani 2011]

In each of these settings, the learning problem is decidable under syntactic restrictions expressed
by a (tree) grammar, which is given as an input along with the sample structures.

We emphasize our contributions are theoretical. The programming language itself is a notational
tool that identifies and abstracts a pattern we observe many times in this work, that of programming
with two-way tree automata to prove decidable learning and derive decision procedures. The learning

1Details can be found in Appendix C.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 3

algorithms we obtain have high complexity; implementing a compiler from the programming
language to efficient decision procedures for learning will involve heuristics that depend on
specific problems. We note that learning problems for several of the languages we study are of
practical interest, with previous work exploring algorithms for regular expressions [Fernau 2009; Li
et al. 2008], linear temporal logic [Neider and Gavran 2018], context-free grammars [Langley and
Stromsten 2000; Sakakibara 2005; Vanlehn and Ball 1987], and string transformations in Microsoft
Excel’s Flash Fill [Gulwani 2011].

Meta-theorem. Each of the results above follows from a meta-theorem which says, intuitively,
that languages are decidably learnable as long as expressions can be evaluated over any structure
using a particular kind of program. More precisely, we require a semantic evaluator 𝑃 that, given a
structure𝑀 and expression 𝑒 , evaluates 𝑒 over𝑀 by navigating up and down on the syntax tree for
𝑒 using recursion. Furthermore, 𝑃 must rely only on a finite set of semantic aspects of the structure
for memory during its navigation over 𝑒 . This set depends on𝑀 but not on 𝑒 . As long as we can
write such an evaluator, the meta-theorem guarantees decidable learning for the language!

The notion of semantic aspects is quite natural in the settings we consider. In logic, the semantics
of formulas 𝜑 over a structure 𝑀 is often presented by recursion on 𝜑 , with some additional
information. For instance, the satisfaction relation 𝑀,𝛾 |= 𝜑 for FO uses an interpretation of
variables 𝛾 . For FO with a fixed set of 𝑘 variables, the number of such 𝛾 is bounded; it depends on
the structure𝑀 but not on the formula 𝜑 , and hence meets the finite-aspect requirement we identify
in this paper. Consequently, the result on decidable learning for finite-variable FO is an immediate
corollary of our meta-theorem. In fact, all such results for finite-variable logics [Krogmeier and
Madhusudan 2022] are obtained as corollaries2.
Semantic aspects are sometimes obvious from standard semantic definitions and sometimes

less so. In modal logic, the standard semantics is defined recursively in terms of the semantics
for subformulas at different nodes in a Kripke structure, and indeed, the aspects in this case are
simply the nodes. For computation tree logic (CTL), standard semantics in the literature would
use the nodes as for modal logic but would go beyond recursion in the structure of expressions
and use recursive definitions to give meaning to formulas (least and greatest fixpoints [McMillan
1992]). In this case, the aspects include the nodes of the structure as well as a counter that encodes
a recursion budget for until and globally formulas to be satisfied, with the counter value bounded
by the number of nodes. The standard semantics for a regular expression 𝑒 defines the language
𝐿(𝑒) recursively in the structure of 𝑒 . For a given word𝑤 , however, we specialize the semantics of
membership in 𝐿(𝑒) to𝑤 , using aspects that correspond to subwords of𝑤 (e.g., a pair of indices
(𝑖, 𝑗) marking the left and right endpoints of a subword, with 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤 |). This membership
semantics involves a finite number of aspects which is quadratic in the size of𝑤 but independent
of 𝑒 . Semantics of linear temporal logic (LTL) formulas over periodic words 𝑢𝑣𝜔 can also be defined
(non-standardly) using a set of aspects corresponding to each position of 𝑢 and 𝑣 , again finite.
The semantics for membership of a word𝑤 in the yield of a context-free grammar (restricted to a
finite set of nonterminals) can again be written with aspects corresponding to subwords, as for
regular expressions. But in this case it also requires navigating the tree representing the grammar
up and downmany times in order to parse𝑤 , which requires keeping some extra memory. Standard
semantics for first-order queries over rational numbers with order would involve an interpretation
of variables as rational numbers, but this set is of course infinite. It turns out that a finite set of
aspects encoding the ordering of the variables is sufficient to define semantics in this setting.

2The tree automata underlying each result for finite-variable logics can be easily translated to semantic evaluators of the
kind we require. See Appendix D for such a semantic evaluator for FO.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

4 P. Krogmeier, P. Madhusudan

The meta-theorem is a powerful tool for establishing decidable learning. We emphasize that its
proof is technically quite simple— programs that navigate trees using recursion can be translated
to two-way alternating tree automata, which can be converted to one-way tree automata to obtain
decision procedures for learning. Our technical contribution lies more in the formalization of the
technique in terms of a programming language for semantic evaluators, and realizations in different
settings with (nonstandard) semantic definitions involving a finite set of aspects.
We use the meta-theorem for the well-known application of learning string transfomations

from examples in the context of spreadsheet programs. The seminal work of Gulwani [Gulwani
2011] established this problem as one of the first important applications of program synthesis from
examples. We consider the language for string programs used in that work and argue that even
a signficant extension of that language admits decidable learning. As far as we know, decidable
learning for this well-studied problem was not known earlier.

Organization. In Section 2 we explore learning in modal logic to motivate the generic learning
algorithm based on tree automata and the notion of semantic aspects. We discuss a semantic
evaluator for modal formulas and abstract the main pattern as a program. Section 3 gives some
background on tree automata. In Section 4 we define the class of finite-aspect checkable languages
(languages that admit decidable learning), formalize a programming language for writing semantic
evaluators, and give the meta-theorem connecting semantic evaluators to tree automata. Sections 5
to 8 establish decidable learning for regular expressions, linear temporal logic, context-free gram-
mars, and first-order queries over rationals with order. In Section 9 we discuss decidable learning
for string transformations. We review related work in Section 10 and conclude in Section 11.

2 MOTIVATING PROBLEM: LEARNING MODAL LOGIC FORMULAS

In this section, we show how to derive learning algorithms from semantic evaluators for proposi-
tional modal logic. We make the observation that a specific kind of semantic evaluator corresponds
to a constructive proof of decidable learning. Specifically, the evaluators must use an amount
of memory bounded by the structure over which expressions are evaluated but independent of
expression size, beyond that afforded by the syntax tree itself. To prove decidable learning for a
new language, it suffices to program such an evaluator. We summarize this main theme as follows:

Effective evaluation using state bounded by structures ====⇒ decidable learning

We next introduce the learning problem for modal logic and explore this theme by developing a
suitable semantic evaluator for modal formulas over Kripke structures.

2.1 Separating Kripke Structures with Modal Logic Formulas

Consider the following problem, with an example illustrated in Figure 1.

Problem (Modal Logic Separation). Given finite sets 𝑃 and 𝑁 of finite pointed Kripke structures
over propositions Σ, and a grammar 𝒢, synthesize a modal logic formula 𝜑 ∈ 𝐿(𝒢) that is true for
structures in 𝑃 (the positives) and false for those in 𝑁 (negatives), or declare none exist.

We review some basics of modal logic [Blackburn et al. 2001]. The following grammar defines the
set of modal logic formulas over a finite set of propositions Σ.

𝜑 F 𝑎 ∈ Σ | 𝜑 ∧ 𝜑 ′ | 𝜑 ∨ 𝜑 ′ | ¬𝜑 | □𝜑 | ♢𝜑

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 5

{𝑎}

{𝑐}

{𝑣}

{𝑐}

{𝑐}

{𝑐}

{𝑎} {𝑐}

{𝑐}

{𝑐}{𝑣}

□(♢(𝑎 ∨ 𝑣))

+ −

{𝑎}

{𝑣}

{𝑣}

{𝑎}{𝑐}

Fig. 1. The modal logic formula 𝜑 = □(♢(𝑎 ∨ 𝑣)) over Σ = {𝑎, 𝑐, 𝑣} is true for the two Kripke structures on the

left and false for the two on the right. Starting nodes 𝑠 are on top with incoming arrows.

The standard semantics of modal logic is reproduced below. Formulas are interpreted against (in
our case finite) pointed Kripke structures 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃), where𝑊 is a set of nodes (or worlds),
𝐸 is a binary neighbor relation on𝑊 , and 𝑃 :𝑊 → 𝒫 (Σ) is a function that labels each node by
the set of all atomic propositions that hold there. A formula 𝜑 is true in 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃), written
𝐺 |= 𝜑 , if it is true starting from 𝑠 , written 𝐺, 𝑠 |= 𝜑 , with the latter notion defined as follows.

𝐺,𝑤 |= 𝑎 ∈ Σ if 𝑎 ∈ 𝑃 (𝑤)
𝐺,𝑤 |= ¬𝜑 if 𝐺,𝑤 ̸ |= 𝜑

𝐺,𝑤 |= 𝜑 ∧ 𝜑 ′ if 𝐺,𝑤 |= 𝜑 and 𝐺,𝑤 |= 𝜑 ′

𝐺,𝑤 |= 𝜑 ∨ 𝜑 ′ if 𝐺,𝑤 |= 𝜑 or 𝐺,𝑤 |= 𝜑 ′

𝐺,𝑤 |= □𝜑 if 𝐺,𝑤 ′ |= 𝜑 for all𝑤 ′ such that 𝐸 (𝑤,𝑤 ′)
𝐺,𝑤 |= ♢𝜑 if 𝐺,𝑤 ′ |= 𝜑 for some𝑤 ′ such that 𝐸 (𝑤,𝑤 ′)

Observe that there are infinitely-many inequivalent modal formulas. Indeed, the sequence

♢𝑎, ♢(♢𝑎), ♢(♢(♢𝑎)), ...
defines an infinite set (𝜑𝑖)𝑖∈N+ of inequivalent formulas. For 𝑖 ∈ N+, a finite graph consisting of a
single directed path of length 𝑖 − 1 makes the formula 𝜑𝑖 false while making all 𝜑 𝑗 true for 𝑗 < 𝑖 .
Thus the search space of modal formulas is infinite, and so we cannot resort to enumeration for
decidable learning in modal logic.

We advocate an automata-theoretic technique for learning problems, which is inspired by recent
work on learning formulas in finite-variable logics [Krogmeier and Madhusudan 2022]:

(1) Encode language expressions as syntax trees over a finite alphabet.
(2) For each structure 𝑝 ∈ P (respectively, 𝑛 ∈ N), construct a tree automaton accepting the

syntax trees for expressions 𝑒 such that 𝑝 |= 𝑒 (respectively, 𝑛 ̸ |= 𝑒).
(3) Construct a tree automaton accepting the intersection of languages for automata from (2),

which accepts all expressions consistent with the examples.
(4) Run an emptiness checking algorithm for the automaton from (3) to synthesize a (small)

expression, or, if the language is empty, report unrealizable.
The procedure above adapts easily to learning with grammar restrictions. Given a regular tree
grammar 𝒢, we can construct a tree automaton accepting precisely the expressions allowed by 𝒢
and take its product with the automaton from (3) before checking emptiness.
The crucial observation we make is that in order to apply this generic procedure to learning

problems for new languages, we need only implement an evaluator for the semantics of the language.
For any fixed structure𝑀 , the evaluator checks whether𝑀 |= 𝑒 for an input expression 𝑒 , where
“ |= ” is a problem-specific semantic relationship. Using the evaluator, we can compute the tree
automaton for each given positive and negative structure and proceed with the algorithm above.
We can view these semantic evaluators as programs whose state depends on the mathematical

structure over which evaluation occurs but depends only to a very small degree on the size of the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

6 P. Krogmeier, P. Madhusudan

expression itself. The key to finding these programs is to consider the question of how to interpret
arbitrary input expressions from the language (presented as syntax trees) against an arbitrary, but
fixed, structure. We invite the reader in the remainder of the section to naïvely explore how to
write a program that evaluates an input modal logic formula 𝜑 against a fixed Kripke structure by
traversing the syntax tree of 𝜑 .

2.2 Evaluating Modal Formulas on Fixed Kripke Structures

We want a procedure for evaluating any formula 𝜑 of modal logic against a fixed Kripke structure
𝐺 = (𝑊, 𝑠, 𝐸, 𝑃), where evaluate means verify that 𝐺 |= 𝜑 . The evaluator hence is designed for any
particular 𝐺 and takes the syntax tree of 𝜑 as input.

Imagine we want to evaluate the formula 𝜑 = □(♢(𝑎 ∨ 𝑣)) from Figure 1 over the rightmost (tree-
shaped) positive structure𝐺 . In particular, we want to check whether 𝐺, 𝑠 |= 𝜑 holds by traversing
the syntax tree for𝜑 (displayed on the right below) from the top down. Suppose𝑛 is a pointer into the
syntax tree of 𝜑 , with 𝑛 initially pointing to the root. We first read the symbol ‘□’, and we recognize
that𝐺, 𝑠 |= 𝜑 holds exactly when the subformula ♢(𝑎∨ 𝑣) holds at each of the two children of 𝑠 in𝐺 .

□

♢

∨
𝑎 𝑣

Let 𝑤1 and 𝑤2 stand for the children of 𝑠 , and let c𝑖 (𝑛) stand for the 𝑖 th child
of the syntax tree pointed to by 𝑛. We now should recursively check whether
𝐺,𝑤1 |= ♢(𝑎 ∨ 𝑣) and𝐺,𝑤2 |= ♢(𝑎 ∨ 𝑣) hold. To do this, we move down in the syntax
tree by setting 𝑛 B c1 (𝑛) = ♢(𝑎 ∨ 𝑣). We then need to check 𝐺,𝑤 ′

1 |= 𝑎 ∨ 𝑣 holds,
where𝑤 ′

1 is either the left or right child of𝑤1 in 𝐺 (and likewise for𝑤2). Suppose
we nondeterministically guess that𝐺,𝑤 ′

1 |= 𝑎∨ 𝑣 holds with𝑤 ′
1 being the left child of

𝑤1. We move down once more by setting 𝑛 B c1 (𝑛) = 𝑎 ∨ 𝑣 and we verify the guess
by checking 𝐺,𝑤 ′

1 |= 𝑎 ∨ 𝑣 , which plays out in a similar way, with the traversal
terminating and returning true because 𝐺,𝑤 ′

1 |= 𝑣 holds, since 𝑣 ∈ 𝑃 (𝑤 ′
1).

Note that the steps described above work for arbitrarily large 𝜑 ; indeed, each next step is
determined by the current symbol of the syntax tree and by some state, namely, the set of nodes
𝑊 , that depends entirely on 𝐺 . Since 𝐺 is finite, so too is this set. Observe also that the traversal
required some computable functions specific to Kripke structures. For example, we needed to
compute the assignment 𝑃 : 𝑉 → 𝒫 (Σ), membership for 𝒫 (Σ), and the set of 𝐸-neighbors of a
given node.

2.3 A Program for Evaluating Modal Formulas

We conclude the example by writing a program which captures our traversal of 𝜑 and the computa-
tion of whether 𝐺 |= 𝜑 . The program takes as inputs the structure 𝐺 , some auxiliary state𝑤 , and a
pointer 𝑛 that initially points to the root of the syntax tree for a modal formula.
The program Modal is shown in Figure 2. We discuss formal semantics for such programs in

Section 4. Intuitively, the program implements the traversal sketched earlier by first matching
against the symbol 𝑛.l which labels the current node of the syntax tree. Depending on the symbol, it
can then either terminate by computing a Boolean function as its final answer (e.g. “𝑥 ∈ 𝑃 (𝑤)”) or
it can combine the results of recursive calls at nearby nodes on the syntax tree. It uses all and any
to represent finite conjunctions and disjunctions, and it uses a few problem-specific computable
functions, which we categorize as either Boolean functions or state functions. The only Boolean
function in this case is for atomic propositions, i.e. “𝑧 ∈ 𝑃 (𝑤)”, and the only state function is for
computing the neighborhood of a given node in𝐺 , i.e. “{𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)}”. Negation in Figure 2 is
handled by evaluating the negated subformula in a dual state dual(𝑤), in which each part of the
program is interpreted as its dual, e.g., and becomes or, etc. We return to these details in Section 4.

Recall the theme from the beginning of this section:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 7

Modal(𝐺, 𝑤, 𝑛) B match 𝑛.l with

∧ → Modal(𝐺, 𝑤, 𝑛.c1) and Modal(𝐺, 𝑤, 𝑛.c2)
∨ → Modal(𝐺, 𝑤, 𝑛.c1) or Modal(𝐺, 𝑤, 𝑛.c2)
¬ → Modal(𝐺, dual(𝑤), 𝑛.c1)
□ → all (_𝑧. Modal(𝐺, 𝑧, 𝑛.c1)) {𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)}
♢ → any (_𝑧. Modal(𝐺, 𝑧, 𝑛.c1)) {𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)}
𝑥 → 𝑥 ∈ 𝑃 (𝑤)

Fig. 2. Modal evaluates modal formula 𝜑 pointed to by 𝑛 against Kripke structure 𝐺 and checks 𝐺 |= 𝜑 .

Effective evaluation using state bounded by structures ====⇒ decidable learning

The evaluator for modal formulas uses auxiliary states that depend on the number of nodes in the
Kripke structure, and not on the size of the syntax tree. Strictly speaking, it accesses the syntax tree
using a pointer, and hence involves some minimal amount of memory that depends on expression
size, but this is the only such dependence.
As we have just observed, effective evaluation of this sort is possible for modal logic on finite

Kripke structures, and programs witnessing this fact like the one in Figure 2 imply decision
procedures for learning. In the remainder of the paper, we define a class of languages with decidable
learning and formalize the programming language for evaluators as well as a meta-theorem which
reduces proofs of decidable learning to the task of programming evaluators. We write such programs
to obtain results for several other learning problems.

3 PRELIMINARIES

Here we review some background on syntax trees, tree grammars, and tree automata.

3.1 Syntax Trees and Tree Grammars

For each symbolic language in this paper we use a ranked alphabet to form expression syntax trees.
A ranked alphabet Δ is a set of symbols 𝑠 equipped with a function arity(𝑠) ∈ N. For example,
the ranked alphabet for modal formulas over Σ has arity(♢) = 1, arity(∧) = 2, and arity(𝑎) = 0
for each 𝑎 ∈ Σ. We write 𝑇Δ for the set of Δ-terms, or (Δ-)syntax trees, which is the smallest set
containing symbols of arity 0 from Δ and closed under forming new terms with symbols of greater
arities. We write 𝑇Δ (𝑋) for the set of Δ-terms constructed with a fresh set of nullary symbols 𝑋 .

We use regular tree grammars to express syntax restrictions for learning problems. A regular tree
grammar is a tuple 𝒢 = (NT ,Δ, 𝑆, 𝑃) consisting of a finite set of nonterminals NT , ranked alphabet
Δ, starting nonterminal 𝑆 ∈ NT , and productions 𝑃 . Each production has the form “𝐴 → 𝑡”, with
𝐴 ∈ NT and 𝑡 ∈ 𝑇Δ (NT). We associate with the productions 𝑃 a reflexive and transitive rewrite
relation→∗

𝑃
on terms𝑇Δ (NT), and the language 𝐿(𝒢) is the set

{
𝑡 ∈ 𝑇Δ (∅) | 𝑆 →∗

𝑃
𝑡
}
. See [Comon

et al. 2007] for details.

3.2 Tree Automata

Tree automata are finite state machines that operate on trees. We will use tree automata that
operate on finite trees, formally terms, as described in Section 3.1. Such automata are tuples
𝒜 = (𝑄,Δ, 𝑞𝑖 , 𝛿, 𝐹) consisting of a finite set of states 𝑄 , ranked alphabet Δ, initial state 𝑞𝑖 ∈ 𝑄 ,
transition function 𝛿 , and acceptance condition 𝐹 . An automaton accepts a tree 𝑡 ∈ 𝑇Δ if it has an
accepting run over 𝑡 . The notions of run and accepting run can vary.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

8 P. Krogmeier, P. Madhusudan

In this work we use a convenient, though no more expressive, variant of tree automata called
an alternating two-way tree automaton. Such automata walk up and down on their input tree and
branch using alternation to send copies of the automaton in updated states to nearby nodes of the
tree. We will only use reachability acceptance conditions in this paper, where 𝐹 ⊆ 𝑄 , and a tree is
accepted if along every trajectory of the automaton during its walk over the tree, it reaches a state
in 𝐹 . We omit the formal definition of runs for these automata, which is entirely standard, though
complicated, and unnecessary for understanding our results.
For a symbol 𝑠 ∈ Δ with arity(𝑠) = 𝑘 and state 𝑞 ∈ 𝑄 , the available transitions for a two-way

alternating tree automaton are described by a Boolean formula

𝛿 (𝑞, 𝑠) ∈ ℬ+ (𝑄 × {−1, 0, . . . , 𝑘}),

where ℬ+ (𝑋) means the set of positive Boolean formulas over variables from a set 𝑋 . Each variable
(𝑞,𝑚) represents a new state 𝑞 and direction𝑚 to take at a particular node in the tree, with𝑚 = −1
being a move up to the parent of the current node,𝑚 = 0 meaning to stay at the current node,
and the other numbers being moves down into one of 𝑘 children. A subset of 𝑄 × {−1, 0, . . . , 𝑘}
corresponds to a Boolean assignment, and the automaton can proceed according to any assignment
that satisfies the current transition formula. For example, if the automaton reads symbol ℎ in state
𝑞, the transition

𝛿 (𝑞, ℎ) = ((𝑞1, 1) ∧ (𝑞2, 1)) ∨ ((𝑞1, 2) ∧ (𝑞2, 0) ∧ (𝑞1,−1))

would allow either of the following: (1) continuing in states 𝑞1 and 𝑞2, each starting from the
leftmost child, or (2) continuing from 𝑞1 in the second child from left, from 𝑞2 at the current node,
and from 𝑞1 in the parent.

Two-way alternating tree automata can be converted to one-way nondeterministic tree automata
with an exponential increase in states [Cachat 2002; Vardi 1998], and so they inherit closure
properties and standard decision procedures. In particular, the emptiness problem can be solved in
exponential time and a small tree in the language can be synthesized in the same amount of time
when nonempty. See [Comon et al. 2007] for details.

4 META-THEOREM FOR DECIDABLE LEARNING

In this section we define a rich class of languages for which decidable learning is possible. We then
develop a meta-theorem which reduces proofs of decidable learning to writing semantic evaluators
in a programming language, which we call Facet3. The decision procedures involve an effective
translation of Facet programs into two-way alternating tree automata that read syntax trees. After
defining the class (Section 4.1), we discuss the syntax and semantics of Facet (Section 4.2), followed
by the meta-theorem (Section 4.3), which says that any language whose semantics can be evaluated
by a Facet program has decidable learning. We then apply this theorem to show decidable learning
for modal logic and computation tree logic (Section 4.4).

4.1 A Class of Languages with Decidable Learning

There is a surprisingly rich set of languages that have decidable learning via essentially one generic
decision procedure, which we describe here. For our purposes, a language consists of a set of
expressions ℒ4, a class of finitely-representable structures ℳ over the same signature, and a
semantic function that interprets a structure and an expression in some domain 𝐷 , written with a
turnstile as (_ |= _) : ℳ × ℒ → 𝐷 . Sometimes we just use ℒ to refer to such a symbolic language.

3Facet stands for finite aspect checkers of expression trees.
4We often abuse notation and do not distinguish between expressions 𝑒 ∈ ℒ and the syntax trees for 𝑒 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 9

The decision procedure relies on building a tree automaton that accepts the set of all (syntax
trees for) expressions 𝑒 ∈ ℒ that are consistent with a given example. In a supervised learning
scenario, with 𝐷 = B ≔ {True, False} and examples modeled as pairs (𝑀,𝑏) ∈ ℳ×B, one builds a
tree automaton 𝒜(𝑀,𝑏) such that 𝐿(𝒜(𝑀,𝑏)) = {𝑒 ∈ ℒ : 𝑀 |= 𝑒 = 𝑏}. For a finite set of examples
𝐸 = (𝑀𝑖 , 𝑏𝑖)𝑖 , we take the product 𝒜(E) = ∧

𝑖 𝒜(𝑀𝑖 , 𝑏𝑖). Given an automaton 𝒜(𝒢) that accepts
syntax trees conforming to a tree grammar 𝒢, we construct the product 𝒜(𝐸) ∧𝒜(𝒢) and run an
emptiness algorithm on the result to synthesize a tree in the language if one exists.

The crucial requirement above is to be able to build 𝒜(𝑀,𝑏) for any𝑀 , which is an automaton
that acts as an evaluator for the language over𝑀 . This is possible when the semantics of a language
is definable in terms of a finite amount of auxiliary information, which may depend (sometimes
wildly) on the particular structure 𝑀 but not on the expression size. We refer to such auxiliary
semantic information as semantic aspects, or just aspects, and we call languages for which evaluators
can be implemented using tree automata finite-aspect checkable5.

Definition (Finite-Aspect Checkable Language). A language (ℳ,ℒ, |=) is finite-aspect checkable
(FAC) if for every (𝑀,𝑑) ∈ ℳ × 𝐷 there is a tree automaton 𝒜(𝑀,𝑑) over syntax trees for ℒ such
that 𝐿(𝒜(𝑀,𝑑)) = {𝑒 ∈ ℒ : 𝑀 |= 𝑒 = 𝑑}, and the mapping (𝑀,𝑑) ↦→ 𝒜(𝑀,𝑑) is computable.

Note that all FAC languages have decidable learning by the generic algorithm described above.
FAC languages only require the automata to be computable given (𝑀,𝑑) ∈ ℳ × 𝐷 , but all

examples we have considered in fact have small witnesses for being FAC: the tree automata can be
described compactly by a program that evaluates an input syntax tree against an input structure.
We next describe the programming language Facet, which abstracts the common features of such
programs. Our meta-theorem relies on a simple procedure that takes a program 𝑃 ∈ Facet, a
structure𝑀 ∈ ℳ, and a domain element 𝑑 ∈ 𝐷 , and computes the tree automaton 𝒜(𝑀,𝑑).

4.2 Syntax and Semantics of Facet

We present the syntax and semantics of Facet by way of example. We omit many details that are
not important for understanding later sections and results; details, including formal semantics of
Facet, can be found in Appendix A.

Programs in Facet are parameterized by a symbolic language (ℒ,ℳ, |=). A program 𝑃 takes as
input a pointer into the syntax tree for an expression 𝑒 ∈ ℒ as well as a structure 𝑀 ∈ ℳ. The
program navigates up and down on 𝑒 using a set of pointers to move from children to parent and
parent to children in order to evaluate the semantics of 𝑒 over the structure 𝑀 and verify that
𝑀 |= 𝑒 = 𝑑 for some 𝑑 ∈ 𝐷 . To write a Facet program we first specify two things: (1) the symbolic
language ℒ over which the program is to operate and (2) the program’s auxiliary state, which
corresponds to the semantic aspects of ℒ. Part (1) involves specifying (1a) the syntax trees for ℒ in
terms of a ranked alphabet Δ and (1b) the signature for structuresℳ, which is a set of functions
used to access the data for any given 𝑀 ∈ ℳ. The set of auxiliary states of part (2), which we
denote by Asp, will typically be infinite. For a fixed structure𝑀 ∈ ℳ, however, programs will only
use a finite subset Asp(𝑀) ⊂ Asp, provided the symbolic language ℒ is FAC, and so we will only
need to specify Asp(𝑀) for an arbitrary fixed𝑀 .
For example, consider the program Modal for modal logic in Figure 2. Part (1): the symbolic

language is modal logic over finite pointed Kripke structures 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃) with propositions
Σ. We fix any straightforward representation of formulas as syntax trees, and we use two Kripke
structure-specific functions for interpreting modal logic. The first computes the neighborhood
{𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)} of a given node𝑤 ∈𝑊 , and the second computes whether a given proposition

5Checkable refers to the model checking problem for a logic, i.e. checking whether𝑀 |= 𝜑 for a structure𝑀 and formula 𝜑 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

10 P. Krogmeier, P. Madhusudan

Prog ::= { Clause . . . Clause }
Clause ::= P(𝑀, 𝜎 (𝑧), 𝑛) B match 𝑛.l with Cases
Cases ::= 𝛼1 (𝑧) → 𝑒1 . . . 𝛼𝑛 (𝑧) → 𝑒𝑛

𝑒 ::= True | False | 𝑓 (𝑧)
| 𝑒1 and 𝑒2 | 𝑒1 or 𝑒2 | P(𝑀, 𝜎 (𝑧), 𝑛.dir)
| all (_𝑥. 𝑒) 𝑔(𝑧) | any (_𝑥. 𝑒) 𝑔(𝑧) | if 𝑓 (𝑧) then 𝑒1 else 𝑒2

𝛼 (𝑧) ∈ pat (Δ) 𝜎 (𝑧) ∈ pat (Asp) 𝑓 ∈ 𝐵, 𝑔 ∈ 𝑆 dir ∈ {up, stay, c1, ..., ck}

Fig. 3. Syntax for Facet programs. We use 𝑥 to denote a single variable and 𝑧 to denote a vector of variables.

𝑥 ∈ Σ is true at a given node𝑤 ∈𝑊 , i.e. whether 𝑥 ∈ 𝑃 (𝑤) holds. Part (2): the states Asp(𝑀) are
the nodes of the Kripke structure, i.e. the set𝑊 .

4.2.1 Syntax. The formal syntax for Facet programs is shown in Figure 3. A program 𝑃 ∈ Facet
consists of a set of clauses, which we denote by C (𝑃), or just C, each of which has the form

𝑃(𝑀, 𝜎 (𝑧), 𝑛) B match 𝑛.l with . . .

The parameter 𝑀 is a mathematical structure (e.g. a Kripke structure) and the parameter 𝑛 is a
pointer into a syntax tree (e.g. for a modal logic formula). The parameter 𝜎 (𝑧) is a pattern (e.g. a
variable 𝑤 matching any node of a Kripke structure). We treat both the ranked alphabet Δ and
auxiliary states Asp(𝑀) as algebraic data types and allow Facet programs to pattern match over
these using expressions from two sets of patterns, alphabet patterns pat (Δ) and state patterns
pat (Asp). For example, for Modal in Figure 2, the (trivial) state pattern 𝑤 ∈ pat (Asp) will match
any node of the input Kripke structure, and the (trivial) alphabet pattern 𝑥 ∈ pat (Δ) will match
any of the modal logic propositions in Σ.
Each clause in 𝐶 has a single match statement, consisting of a list of cases, each of the form

“𝛼𝑖 (𝑧) → 𝑒”, with an alphabet pattern on the left and an expression on the right. Expressions 𝑒
represent Boolean functions, possibly involving results of recursive calls “P(𝑀,𝜎 (𝑧),𝑛.dir)” that
start in new states 𝜎 (𝑧) at nearby nodes 𝑛.dir on the syntax tree. Compound expressions are built
using and, or, all, any, and if. For example, in Figure 2, the first two cases involve recursive calls
at the two children (𝑛.c1 and 𝑛.c2) of the current node, in the same state𝑤 , and return, respectively,
the conjunction and disjunction of the results.
The sets 𝑆 and 𝐵 in Figure 3 categorize the signature functions for structuresℳ as one of two

kinds. State functions 𝑔 ∈ 𝑆 are used to compute new states for the program, e.g. computing the
neighborhood of a given node in a Kripke structure. These functions are used in any and all
expressions to bind parts of the structure𝑀 to variables. Boolean functions6 𝑓 ∈ 𝐵 are used in if
expressions as well as for base cases in recursion, e.g. computing membership in the set of true
propositions for each node of a Kripke structure. Note that for all the symbolic languages in this
paper, the signature functions are evidently computable.

4.2.2 Semantics. Given a structure 𝑀 , state 𝜎 ∈ Asp(𝑀), and pointer 𝑛, a program operates by
first determining the clause whose state pattern 𝜎 (𝑧) matches 𝜎 . We consider only well-formed
programs in which every state is matched by the state pattern of precisely one clause. After the
unique matching clause is determined, the program matches the symbol 𝑛.l labeling the current

6We assume the set of Boolean functions 𝐵 is closed under complement.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 11

node of the syntax tree against the alphabet patterns. It then evaluates the expression on the right
side of the first matching case and returns a Boolean result, either success or failure.

A formal semantics for Facet can be found in Appendix A. It defines a predicate ⇓𝑝 on program
configurations of the form (𝑀,𝑛,C (𝑃), 𝜎). The assertion (𝑀,𝑛,C (𝑃), 𝜎) ⇓𝑝 has the following
meaning: the program consisting of clauses C (𝑃) terminates with success (that is, it computes
“true”) on the syntax tree pointed to by 𝑛, when started from state 𝜎 and working over the structure
𝑀 .

Consider the operation of the program Modal from Figure 2 over the tree-shaped positive Kripke
structure from Figure 1 and the formula 𝜑 = □(♢(𝑎 ∨ 𝑣)). Suppose 𝑛 is pointing at the root of
𝜑 , with label □, and the current state is 𝑠 ∈ 𝑊 (the top node of the Kripke structure). The state
𝑠 matches the state pattern of the clause depicted in Figure 2, and the variable 𝑤 is bound to
𝑠 . Next, the symbol 𝑛.l = □ matches the fourth case of the match statement, and the program
evaluates the all expression. To do this, it uses a state function to compute the neighborhood
𝑁 (𝑠) = {𝑦 ∈ 𝐺 : 𝐸 (𝑠,𝑦)}. It then returns the conjunction of results for recursive calls obtained by
evaluating Modal(𝐺,𝑧,𝑛.c1) with 𝑧 bound to the states of 𝑁 (𝑠). This involves two recursive calls
with pointer 𝑛.c1 corresponding to the formula ♢(𝑎∨𝑣) in states corresponding to the two neighbors
of 𝑠 . Each of these recursive calls involves evaluating the any expression for the ♢ case, which in
turn involves evaluating the expression for the ∨ case. Finally, when the program encounters either
of the propositions 𝑎, 𝑣 ∈ Σ in the syntax tree, the last case will match, and the program uses a
function to compute 𝑥 ∈ 𝑃 (𝑤), i.e. whether the proposition bound to 𝑥 is true at the current state.

4.3 Meta-Theorem

We now connect Facet programs with automata to give our meta-theorem for decidable learning.
The proof relies on the following lemma, which states that programs in Facet that use finite
auxiliary states for any structure can be translated to two-way alternating tree automata.

Lemma 1. Let (ℒ,ℳ, |=) be a symbolic language and Δ an alphabet for ℒ. Let 𝑃 be a well-formed
Facet program over (ℒ,ℳ, |=) with computable signature functions and with Asp(𝑀) finite for
every𝑀 ∈ ℳ. Then for every𝑀 ∈ ℳ and 𝜎 ∈ Asp(𝑀), we can compute a two-way alternating
tree automaton 𝒜(𝑃,𝑀, 𝜎) = (𝑄,Δ, 𝑞𝑖 , 𝛿, 𝐹) such that for every 𝑒 ∈ ℒ, we have 𝑒 ∈ 𝐿(𝒜(𝑃,𝑀, 𝜎))
if and only if (𝑀, root (𝑒),C (𝑃), 𝜎) ⇓𝑝 .

Proof Sketch. The automaton states are𝑄 = Asp(𝑀) ⊔ {𝑞⊤, 𝑞⊥}, with 𝑞⊤ and 𝑞⊥ being absorb-
ing states for accepting and rejecting upon termination of the program. The initial state is 𝑞𝑖 = 𝜎 ,
and the transitions 𝛿 are obtained by a straightforward translation of expressions into Boolean
formulas, detailed in Appendix B. The acceptance condition is reachability with 𝐹 = {𝑞⊤}. The cor-
respondence between the language of the automaton and semantic proofs for 𝑃 is straightforward
and essentially follows by construction. □

Theorem1 (Decidable LearningMeta-Theorem). Let (ℒ,ℳ, |=) be a language. If there is a semantic
evaluator, i.e., a well-formed program 𝑃 ∈ Facet, such that for all𝑀 ∈ ℳ, Asp(𝑀) is finite, and
for all 𝑒 ∈ ℒ and 𝑑 ∈ 𝐷 there is a 𝜎𝑑 ∈ Asp(𝑀) for which (𝑀, root (𝑒),C (𝑃), 𝜎𝑑) ⇓𝑝 if and only if
𝑀 |= 𝑒 = 𝑑 , then (ℒ,ℳ, |=) has decidable learning.

Proof. Let 𝑃 be an evaluator for a language (ℒ,ℳ, |=), let (𝑀𝑖 , 𝑑𝑖)𝑖 be a finite set of examples
fromℳ×𝐷 , and let 𝒢 be a tree grammar forℒ. Build the tree automata𝒜(𝑃,𝑀𝑖 , 𝜎𝑑𝑖) from Lemma 1.
Construct the product of these automata and convert the result to a nondeterministic tree automaton
𝒜. Take the product of 𝒜 with a nondeterministic tree automaton for 𝒢, and use an emptiness
algorithm to synthesize an expression or decide there is none. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

12 P. Krogmeier, P. Madhusudan

Remark on Complexity. The complexity of decision procedures for learning can be read from the
number of aspects used by the evaluation program, since they correspond to automaton states.
Products of two-way tree automata obtained from Lemma 1 are converted to one-way nondeter-
ministic tree automata with an exponential increase in states using known algorithms [Cachat 2002;
Vardi 1998]. This leads to decision procedures with time complexity exponential in the number
of aspects as well as the number of examples. Provided that signature functions are computable
in time exponential in the size of structures (true for all languages in this paper), we can use the
following:

Corollary 1. Decision procedures for learning obtained via Theorem 1 have time complexity
exponential in the number of examples and the number of aspects, and linear in the size of the
grammar.

Facet enables compact descriptions of two-way tree automata, and thereby enables decision
procedures for learning to be developed using intuition from programming. If we can write a Facet
program to interpret a language ℒ using a fixed amount of auxiliary state for any given structure,
then the language is FAC and decision procedures for learning and synthesis follow from results in
automata theory.

4.4 Decidable Learning for Modal Logic and Dual Clauses

We finish this section with a decidable learning theorem for modal logic by completing the Modal
program from Section 2 and explaining dual states and programs, which are syntactic sugar useful
for handling negation and negative examples.
The grammar for modal logic formulas over propositions Σ from earlier has a straightforward

ranked alphabet Δ, with members of Σ having arity 0. The classℳ consists of finite pointed Kripke
structures 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃). For a given 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃) we have

Asp(𝐺) = {𝑤, dual(𝑤) : 𝑤 ∈𝑊 },
where dual is a constructor for states related to negation. There are two signature functions: a state
function for computing neighborhoods {𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)} and a Boolean function for computing
membership in 𝑃 (𝑤), for a given 𝑤 ∈ 𝑊 . Along with the clause in Figure 2, Modal includes the
dual of that clause, shown in Figure 4, which operates on states of the form dual(𝑥). For any clause
𝑐 there is a simple translation to produce its dual clause dual(𝑐) as follows:

𝑐 = 𝑃(𝑀, 𝜎 (𝑧), 𝑛) B match 𝑛.l with 𝛼1 → 𝑒1 ... 𝛼𝑛 → 𝑒𝑛
dual(𝑐) = 𝑃(𝑀, dual(𝜎 (𝑧)), 𝑛) B match 𝑛.l with 𝛼1 → dual(𝑒1) ... 𝛼𝑛 → dual(𝑒𝑛)

The expressions dual(𝑒𝑖) are obtained by recursively swapping True with False, and with or,
all with any, etc., as follows:

dual(True) = False dual(False) = True
dual(𝑒 and 𝑒 ′) = dual(𝑒) or dual(𝑒 ′) dual(𝑒 or 𝑒 ′) = dual(𝑒) and dual(𝑒 ′)
dual(𝑃(𝑀, 𝜎 (𝑧), 𝑛.dir)) = 𝑃(𝑀, flip(𝜎 (𝑧)), 𝑛.dir) dual(𝑓 (𝑣)) = ¬𝑓 (𝑣)
dual(all (_𝑧. 𝑒) 𝑔(𝑣)) = any (_𝑧. dual(𝑒)) 𝑔(𝑣)
dual(any (_𝑧. 𝑒) 𝑔(𝑣)) = all (_𝑧. dual(𝑒)) 𝑔(𝑣)
dual(if 𝑓 (𝑣) then 𝑒1 else 𝑒2) = if 𝑓 (𝑣) then dual(𝑒1) else dual(𝑒2)

where flip(dual(𝜎 (𝑧))) = 𝜎 (𝑧) and otherwise flip(𝜎 (𝑧)) = dual(𝜎 (𝑧)). For the program Modal, the
dual and non-dual clauses invoke each other whenever a negation operator is encountered in the
syntax tree. But dual clauses are useful even if the language ℒ has no negation operation, given we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 13

Modal(𝐺, dual(𝑤), 𝑛) B match 𝑛.l with

∧ → Modal(𝐺, dual(𝑤), 𝑛.c1) or Modal(𝐺, dual(𝑤), 𝑛.c2)
∨ → Modal(𝐺, dual(𝑤), 𝑛.c1) and Modal(𝐺, dual(𝑤), 𝑛.c2)
¬ → Modal(𝐺, 𝑤, 𝑛.c1)
□ → any (_𝑧. Modal(𝐺, dual(𝑧), 𝑛.c1)) {𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)}
♢ → all (_𝑧. Modal(𝐺, dual(𝑧), 𝑛.c1)) {𝑦 ∈ 𝐺 : 𝐸 (𝑤,𝑦)}
𝑥 → 𝑥 ∉ 𝑃 (𝑤)

Fig. 4. Dual clause for Modal, which evaluates formula 𝜑 pointed to by 𝑛 against 𝐺 and verifies 𝐺 ̸ |= 𝜑 .

may need to check that semantic relationships do not hold for negative structures. Also note that
the dual transformation above is a syntactic notion for Facet programs, entirely independent of
the symbolic language ℒ. From now on we omit the dual clauses from our presentation.
In light of the meta-theorem and the Modal program, we have the following.

Theorem 2. Modal logic separation for sets of Kripke structures P and N with grammar 𝒢 is
decidable in time 𝒪(2poly (𝑚𝑛) · |𝒢 |), where 𝑛 = max𝐺 ∈P∪N |𝐺 | and𝑚 = |P | + |N |.

Proof Sketch. For all Kripke structures 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃),𝑤 ∈𝑊 , and formulas 𝜑 , we have that
𝐺,𝑤 |= 𝜑 iff (𝐺, root (𝜑),C (Modal),𝑤) ⇓𝑝 and𝐺,𝑤 ̸ |= 𝜑 iff (𝐺, root (𝜑),C (Modal), dual(𝑤)) ⇓𝑝 . The
proof is by induction on 𝜑 . The rest follows by Theorem 1 and Corollary 1, with 𝐷 = {True, False},
𝜎True = 𝑠 and 𝜎False = dual(𝑠), noting that |Asp(𝐺) | = 𝒪(|𝑊 |). □

Computation tree logic. Do other modal logics over finite Kripke structures have decidable
learning? For computation tree logic (CTL) the answer is affirmative, and we can program a Facet
evaluator whose aspects again involve the nodes of the Kripke structure. We consider the following
grammar for CTL formulas, from which other standard operators can be defined:

𝜑 F 𝑎 ∈ Σ | 𝜑 ∨ 𝜑 ′ | ¬𝜑 | EG𝜑 | E(𝜑U𝜑 ′) | EX𝜑

These formulas are interpreted over finite Kripke structures, and the operations in common with
propositional modal logic are interpreted in the same way. The novelty of CTL is that it can quantify
over paths in the Kripke structure using the formulas starting with E, which assert the existence of
a path along which the subformula holds. The semantics for path quantifiers is given recursively
based on the following:

𝐺,𝑤 |= EX𝜑 ⇔ ∃𝑤 ′. 𝐸 (𝑤,𝑤 ′) and 𝐺,𝑤 ′ |= 𝜑

with the other two path quantifiers interpreted according to the equivalences

(1) EG𝜑 ≡ 𝜑 ∧ EX(EG𝜑) and (2) E(𝜑U𝜑 ′) ≡ 𝜑 ′ ∨ 𝜑 ∧ EX(E(𝜑U𝜑 ′)),

with (1) understood as a greatest fixpoint and (2) as a least fixpoint. This recursion introduces a
subtlety, because the evaluator should avoid infinite recursion caused by interpreting E formulas as
the right-hand sides of these equivalences. We can address this by introducing a bounded counter in
the state of our CTL program, which enables it to terminate after a sufficient amount of recursion
(bounded by the number of nodes in the Kripke structure). Below we state decidable learning for
CTL; see Appendix C for the program and proof.

Theorem 3. CTL separation for finite sets P andN of finite pointed Kripke structures, and grammar
𝒢, is decidable in time 𝒪(2poly (𝑚𝑛2) · |𝒢 |), where𝑚 = |P | + |N | and 𝑛 = max𝐺 ∈P∪N |𝐺 |.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

14 P. Krogmeier, P. Madhusudan

In the remainder of the paper we derive new decision procedures for several learning problems
by writing Facet programs. We avoid details about the Facet language and focus instead on the
logic of the programs as well as the aspects needed to accurately evaluate expressions.

5 LEARNING REGULAR EXPRESSIONS

In this section we develop a decision procedure for learning regular expressions from finite words.
In contrast to propositional modal logic, the semantics of regular expressions involves recursion in
the structure of expressions as well as recursion over the structures (finite words) themselves.

5.1 Separating Words with Regular Expressions

Consider the following problem.

Problem (Regular Expression Separation). Given finite sets P and N of finite words over an
alphabet Σ, and a grammar 𝒢, synthesize a regular expression over Σ that matches all words in P ,
does not match any word in 𝑁 , and conforms to 𝒢, or declare none exist.

We consider extended regular expressions from the following grammar.

𝑒 F 𝑎 ∈ Σ | 𝑒 · 𝑒 ′ | 𝑒 + 𝑒 ′ | 𝑒 ∩ 𝑒 ′ | 𝑒∗ | ¬𝑒

Recall that, to use the meta-theorem (Theorem 1), we must program an evaluator for regular
expressions over fixed Σ-words. The notion of evaluation here is membership of a word𝑤 in the
language of a regular expression 𝑒 , i.e.𝑤 |= 𝑒 ⇔ 𝑤 ∈ 𝐿(𝑒). This semantics has a straightforward
recursive definition, and it can be presented in terms of an auxiliary relation for membership of
subwords of𝑤 :

𝑤 ∈ 𝐿(𝑒) ⇔ 𝑤, (1, |𝑤 | + 1) |= 𝑒.

In the notation above, (𝑙, 𝑟) indicates the subword𝑤 (𝑙, 𝑟) from positions 𝑙 to 𝑟 − 1 inclusive, taking
𝑤 (𝑖, 𝑖) = 𝜖 for any𝑤 and 𝑖 . The semantics of subword membership is given below.

𝑤, (𝑙, 𝑟) |= 𝑎 ∈ Σ if 𝑤 (𝑙) = 𝑎 and 𝑟 = 𝑙 + 1
𝑤, (𝑙, 𝑟) |= 𝑒 · 𝑒 ′ if 𝑤, (𝑙, 𝑘) |= 𝑒 and 𝑤, (𝑘, 𝑟) |= 𝑒 ′ for some 𝑘 ∈ [𝑙, 𝑟]
𝑤, (𝑙, 𝑟) |= 𝑒 + 𝑒 ′ if 𝑤, (𝑙, 𝑟) |= 𝑒 or 𝑤, (𝑙, 𝑟) |= 𝑒 ′

𝑤, (𝑙, 𝑟) |= 𝑒 ∩ 𝑒 ′ if 𝑤, (𝑙, 𝑟) |= 𝑒 and 𝑤, (𝑙, 𝑟) |= 𝑒 ′

𝑤, (𝑙, 𝑟) |= 𝑒∗ if 𝑙 = 𝑟 or ∃𝑘 ∈ [𝑙 + 1, 𝑟] . 𝑤, (𝑙, 𝑘) |= 𝑒 and 𝑤, (𝑘, 𝑟) |= 𝑒∗

𝑤, (𝑙, 𝑟) |= ¬𝑒 if 𝑤, (𝑙, 𝑟) ̸|= 𝑒

Observe that if we fix the word 𝑤 then the number of pairs (𝑙, 𝑟) used in the definition above is
finite. Also observe that the definition in the case for Kleene star is well-founded because either
the expression size decreases or the subword length decreases.

Remark. Regular expression separation has two overfitting-style solutions if we ignore the syntax
restriction from the input grammar 𝒢. Simply use +𝑤∈P𝑤 for the tightest regular expression that
matches all of P , or alternatively, ∩𝑤∈N¬𝑤 for the loosest one that avoids matching any of N . If
there is any separating regular expression at all, then either of these must work.

5.2 Decidable Learning for Regular Expressions

We write a Facet program called Reg which reads a regular expression syntax tree and verifies
whether a given word is a member of the language for the regular expression. The class ℳ
consists of structures encoding Σ-words, ℒ consists of regular expressions over Σ, and semantics is

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 15

Reg(𝑤, (𝑙, 𝑟), 𝑛) B match 𝑛.l with

∗ → if (𝑙 = 𝑟) then True else

any (_𝑥. Reg(𝑤, (𝑙, 𝑥), 𝑛.c1) and Reg(𝑤, (𝑥, 𝑟), 𝑛.stay)) [𝑙 + 1, 𝑟]
· → any (_𝑥. Reg(𝑤, (𝑙, 𝑥), 𝑛.c1) and Reg(𝑤, (𝑥, 𝑟), 𝑛.c2)) [𝑙, 𝑟]
+ → Reg(𝑤, (𝑙, 𝑟), 𝑛.c1) or Reg(𝑤, (𝑙, 𝑟), 𝑛.c2)
¬ → Reg(𝑤, dual(𝑙, 𝑟), 𝑛.c1)
∩ → Reg(𝑤, (𝑙, 𝑟), 𝑛.c1) and Reg(𝑤, (𝑙, 𝑟), 𝑛.c2)
𝑥 → 𝑟 = 𝑙 + 1 and 𝑤 (𝑙) = 𝑥

Fig. 5. Reg evaluates the regular expression 𝑒 pointed to by 𝑛 against an input word𝑤 and verifies𝑤 ∈ 𝐿(𝑒).

membership in the language of regular expressions. States are pairs of ordered indices, representing
subwords, along with duals to handle negation.

Asp(𝑤) B {(𝑙, 𝑟), dual(𝑙, 𝑟) : 𝑙 ≤ 𝑟 ∈ [1, |𝑤 | + 1]} .
For instance, if𝑤 = abbb, then the subword𝑤 ′ = ab is represented as the pair of positions (1, 3).
The alphabet Δ for syntax trees is straightforward and uses symbols of arity 0 for members of Σ.
We use state functions for looking up the letter at a given position 𝑖 , written𝑤 (𝑖), the successor
function on positions 𝑥 , written 𝑥 + 1, and functions [𝑥,𝑦] and [𝑥 + 1, 𝑦] for computing the indices
between two positions 𝑥 ≤ 𝑦, with [𝑥 + 1, 𝑦] = ∅ if 𝑥 = 𝑦. Boolean functions include equality and
disequality on positions and letters of Σ.

The program Reg (with dual omitted) is given in Figure 5. States matching (𝑙, 𝑟) are used by the
program to check whether𝑤 (𝑙, 𝑟) ∈ 𝐿(𝑒), and states matching dual(𝑙, 𝑟) are used to check whether
𝑤 (𝑙, 𝑟) ∉ 𝐿(𝑒). Using Reg we get the following.

Theorem 4. Regular expression separation for sets of words P and N and grammar 𝒢 is decidable
in time 𝒪(2poly (𝑚𝑛2) · |𝒢 |), where 𝑛 = max𝑤∈P∪N |𝑤 | and𝑚 = |P | + |N |.

Proof Sketch. For all words 𝑤 , positions 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑤 | + 1, and regular expressions 𝑒 , we
have that 𝑤 (𝑖, 𝑗) ∈ 𝐿(𝑒) if and only if (𝑤, root (𝑒),C (Reg), (𝑖, 𝑗)) ⇓𝑝 and𝑤 (𝑖, 𝑗) ∉ 𝐿(𝑒) if and only
if (𝑤, root (𝑒),C (Reg), dual(𝑖, 𝑗)) ⇓𝑝 . The proof is by induction on |𝑤 | and inner induction on 𝑒 . We
have |Asp(𝑤) | = 𝒪(|𝑤 |2), and the theorem follows by Theorem 1 and Corollary 1. □

6 LINEAR TEMPORAL LOGIC

In this section we consider synthesizing linear temporal logic (LTL) formulas that separate infinite,
periodic words. We again derive a decision procedure for learning by writing a program.

6.1 Separating Infinite Words with Linear Temporal Logic

We consider separating infinite periodic words over a finite alphabet Σ. Such words𝑤 ∈ Σ𝜔 can
be represented finitely as the concatenation of a finite prefix 𝑢 ∈ Σ∗ with a finite repeated suffix
𝑣 ∈ Σ∗. For example, the infinite word babaabbaabbaabbaabb · · · can be represented with 𝑢 = bab
and 𝑣 = aabb. The word is determined by the pair (𝑢, 𝑣), though in general there may be multiple
ways to pick 𝑢 and 𝑣 . Here we could also have picked 𝑢 = baba and 𝑣 = abba. We refer to infinite
periodic words, represented by pairs (𝑢, 𝑣), as lassos.

Problem (Linear Temporal Logic Separation). Given finite sets 𝑃 and 𝑁 of lassos over an alphabet
Σ, and a grammar 𝒢 for LTL over Σ, synthesize a formula 𝜑 ∈ 𝐿(𝒢) such that𝑤 |= 𝜑 for all𝑤 ∈ 𝑃

and𝑤 ̸ |= 𝜑 for all𝑤 ∈ 𝑁 , or declare no such formula exists.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

16 P. Krogmeier, P. Madhusudan

Our LTL formulas come from the following grammar.

𝜑 F 𝑎 ∈ Σ | 𝜑 ∧ 𝜑 ′ | 𝜑 ∨ 𝜑 ′ | ¬𝜑 | X𝜑 | 𝜑U𝜑 ′

Below we present the semantics in a way that makes clear the aspects, which are positions in
the lasso (𝑢, 𝑣), along with an indication of whether the position corresponds to 𝑢 or 𝑣 . An LTL
formula 𝜑 is true in a lasso (𝑢, 𝑣), written (𝑢, 𝑣) |= 𝜑 , precisely when (𝑢, 𝑣), (1, _) |= 𝜑 , with the
latter defined below. The main point is that the following two relationships hold

(𝑢, 𝑣), (𝑖, _) |= 𝜑 ⇔ 𝑢𝑖𝑣𝜔 |= 𝜑 and (𝑢, 𝑣), (_, 𝑗) |= 𝜑 ⇔ 𝑣 𝑗𝑣𝜔 |= 𝜑,

where 𝑢𝑣𝜔 |= 𝜑 is the standard semantics for LTL [Pnueli 1977]. To denote the letter at position
𝑖 we write 𝑤 (𝑖). We use 𝑖 to range over [1, |𝑢 |] and 𝑗 to range over [1, |𝑣 |]. If 𝑗 ′ < 𝑗 , then [𝑗, 𝑗 ′]
means [1, 𝑗 ′] ∪ [𝑗, |𝑣 |]. We use [𝑎, 𝑏) to exclude 𝑏.

(𝑢, 𝑣), (𝑖, _) |= 𝑎 ∈ Σ if 𝑢 (𝑖) = 𝑎

(𝑢, 𝑣), (_, 𝑗) |= 𝑎 ∈ Σ if 𝑣 (𝑗) = 𝑎

(𝑢, 𝑣), 𝑝 |= ¬𝜑 if (𝑢, 𝑣), 𝑝 ̸ |= 𝜑

(𝑢, 𝑣), 𝑝 |= 𝜑 ∧ 𝜑 ′ if (𝑢, 𝑣), 𝑝 |= 𝜑 and (𝑢, 𝑣), 𝑝 |= 𝜑 ′

(𝑢, 𝑣), 𝑝 |= 𝜑 ∨ 𝜑 ′ if (𝑢, 𝑣), 𝑝 |= 𝜑 or (𝑢, 𝑣), 𝑝 |= 𝜑 ′

(𝑢, 𝑣), (|𝑢 |, _) |= X𝜑 if (𝑢, 𝑣), (_, 1) |= 𝜑

(𝑢, 𝑣), (𝑖, _) |= X𝜑 if (𝑢, 𝑣), (𝑖 + 1, _) |= 𝜑 𝑖 < |𝑢 |
(𝑢, 𝑣), (_, 𝑗) |= X𝜑 if (𝑢, 𝑣), (_, 𝑗 mod |𝑣 | + 1) |= 𝜑

(𝑢, 𝑣), (𝑖, _) |= 𝜑U𝜑 ′ if ∃𝑖 ′ ≥ 𝑖 . (𝑢, 𝑣), (𝑖 ′, _) |= 𝜑 ′ and ∀𝑖 ′′ ∈ [𝑖, 𝑖 ′). (𝑢, 𝑣), (𝑖 ′′, _) |= 𝜑

or ∃ 𝑗 . ∀𝑖 ′ ≥ 𝑖 . (𝑢, 𝑣), (𝑖 ′, _) |= 𝜑 and ∀𝑗 ′ < 𝑗 . (𝑢, 𝑣), (_, 𝑗 ′) |= 𝜑

and (𝑢, 𝑣), (_, 𝑗) |= 𝜑 ′

(𝑢, 𝑣), (_, 𝑗) |= 𝜑U𝜑 ′ if ∃ 𝑗 ′. ∀𝑗 ′′ ∈ [𝑗, 𝑗 ′). (𝑢, 𝑣), (_, 𝑗 ′′) |= 𝜑 and (𝑢, 𝑣), (_, 𝑗 ′) |= 𝜑 ′

6.2 Decidable Learning for LTL

The Facet program LTL in Figure 6 reads LTL syntax trees and evaluates them over Σ-lassos,
presented as pairs of finite words (𝑢, 𝑣) ∈ Σ∗ ×Σ∗. Again we omit dual clauses. The ranked alphabet
Δ for syntax trees is similar to those of regular expressions and modal logic. Signature functions
include functions for word length, written |𝑤 |, and functions for computing sets of consecutive
positions, e.g., [𝑥,𝑦] and [𝑥,𝑦). There is also a function wrap(𝑗) defined by

wrap(𝑗) = if 𝑗 > |𝑣 | then 1 else 𝑗

which is used to reset the current lasso position to the beginning of the suffix 𝑣 when it exceeds
|𝑣 |. There are also functions for comparison of positions, e.g. 𝑖 < 𝑖 ′, and equality and disequality
for alphabet letters at a given position, e.g. 𝑢 (𝑖) = 𝑥 . The aspects have the form (_, ·) and (·, _) to
encode whether a position is part of 𝑢 or 𝑣 . For a given lasso (𝑢, 𝑣), we have:

Asp((𝑢, 𝑣)) B {𝑝, dual(𝑝) : 𝑝 ∈ pos}
pos B {(𝑖, _) : 𝑖 ∈ [1, |𝑢 |]} ∪ {(_, 𝑗) : 𝑗 ∈ [1, |𝑣 |]}

Theorem 5. Linear temporal logic separation for finite sets P and N of lassos, and grammar 𝒢, is
decidable in time 𝒪(2poly (𝑚𝑛) · |𝒢 |), with𝑚 = |P | + |N | and 𝑛 = max(𝑢,𝑣) ∈P∪N (|𝑢𝑣 |).

Proof Sketch. For each lasso (𝑢, 𝑣) ∈ P , positions 𝑖 ∈ [1, |𝑢 |], 𝑗 ∈ [1, |𝑣 |], and LTL formula 𝜑 ,
we have that (𝑢, 𝑣), (𝑖, _) |= 𝜑 if and only if ((𝑢, 𝑣), root (𝜑),C (LTL), (𝑖, _)) ⇓𝑝 and (𝑢, 𝑣), (_, 𝑗) |= 𝜑

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 17

LTL((𝑢, 𝑣), (𝑖, _), 𝑛) B match 𝑛.l with

∧ → LTL((𝑢, 𝑣), (𝑖, _), 𝑛.c1) and LTL((𝑢, 𝑣), (𝑖, _), 𝑛.c2)
∨ → LTL((𝑢, 𝑣), (𝑖, _), 𝑛.c1) or LTL((𝑢, 𝑣), (𝑖, _), 𝑛.c2)
¬ → LTL((𝑢, 𝑣), dual(𝑖, _), 𝑛.c1)
X → if 𝑖 < |𝑢 | then LTL((𝑢, 𝑣), (𝑖 + 1, _), 𝑛.c1) else LTL((𝑢, 𝑣), (_, 1), 𝑛.c1)

U → any (_𝑖 ′. LTL((𝑢, 𝑣), (𝑖 ′, _), 𝑛.c2) and

all (_𝑖 ′′. LTL((𝑢, 𝑣), (𝑖 ′′, _), 𝑛.c1)) [𝑖, 𝑖 ′)) [𝑖, |𝑢 |]
or all (_𝑖 ′. LTL((𝑢, 𝑣), (𝑖 ′, _), 𝑛.c1)) [𝑖, |𝑢 |] and

any (_ 𝑗 . all (_ 𝑗 ′. LTL((𝑢, 𝑣), (_, 𝑗 ′), 𝑛.c1)) [1, 𝑗)
and LTL((𝑢, 𝑣), (_, 𝑗), 𝑛.c2)) [1, |𝑣 |]

𝑥 → 𝑢 (𝑖) = 𝑥

LTL((𝑢, 𝑣), (_, 𝑗), 𝑛) B match 𝑛.l with

∧ → LTL((𝑢, 𝑣), (_, 𝑗), 𝑛.c1) and LTL((𝑢, 𝑣), (_, 𝑗), 𝑛.c2)
∨ → LTL((𝑢, 𝑣), (_, 𝑗), 𝑛.c1) or LTL((𝑢, 𝑣), (_, 𝑗), 𝑛.c2)
¬ → LTL((𝑢, 𝑣), dual(_, 𝑗), 𝑛.c1)
X → LTL((𝑢, 𝑣), (_,wrap(𝑗 + 1)), 𝑛.c1)

U → any (_ 𝑗 ′. LTL((𝑢, 𝑣), (_, 𝑗 ′), 𝑛.c2) and

all (_ 𝑗 ′′. LTL((𝑢, 𝑣), (_, 𝑗 ′′), 𝑛.c1)) [𝑗, 𝑗 ′)) [1, |𝑣 |]

𝑥 → 𝑣 (𝑗) = 𝑥

Fig. 6. LTL evaluates the LTL formula 𝜑 pointed to by 𝑛 over lasso (𝑢, 𝑣) and verifies that (𝑢, 𝑣) |= 𝜑 .

if and only if ((𝑢, 𝑣), root (𝜑),C (LTL), (_, 𝑗)) ⇓𝑝 . Similarly, for each lasso (𝑢, 𝑣) ∈ N we have that
(𝑢, 𝑣), (𝑖, _) ̸|= 𝜑 if and only if ((𝑢, 𝑣), root (𝜑),C (LTL), dual((𝑖, _))) ⇓𝑝 and (𝑢, 𝑣), (_, 𝑗) ̸|= 𝜑 if
and only if ((𝑢, 𝑣), root (𝜑),C (LTL), dual((_, 𝑗))) ⇓𝑝 . The proof is by induction on 𝜑 . We have
|Asp((𝑢, 𝑣)) | = 𝒪(|𝑢𝑣 |) and the rest follows by Theorem 1 and Corollary 1. □

7 CONTEXT-FREE GRAMMARS

In this section, we consider another problem involving separation of finite words. The goal is to
synthesize a context-free grammar that generates all positively-labeled words and no negatively-
labeled words. We derive a decision procedure as before by writing a Facet program.

7.1 Separating Words with Context-Free Grammars

Problem (Context-Free Grammar Separation). Given finite sets P and N of finite words over an
alphabet Σ, as well as a (meta-)grammar 𝒢, synthesize a context-free grammar𝐺 over nonterminals
NT , terminals Σ, and axiom 𝑆 ∈ NT , such that 𝐺 ∈ 𝐿(𝒢) and 𝑃 ⊆ 𝐿(𝐺) and 𝑁 ∩ 𝐿(𝐺) = ∅, or
declare no such grammar exists.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

18 P. Krogmeier, P. Madhusudan

The semantics of context-free grammars (CFGs) is standard: a word is generated by a grammar
if we can build a parse tree for it using the productions. We want to represent CFGs as syntax trees
and then write a program that reads such trees and evaluates whether a given word is generated
by the represented grammar. The syntax trees can organize productions along, say, the right spine,
with their right-hand sides in left children as suggested below. Note that the ranked alphabet Δ
uses a binary symbol lhs(𝐴) and nullary symbol rhs(𝐴) for each 𝐴 ∈ NT to distinguish between
occurrences of 𝐴 in the left and right-hand sides of a production. We also use a binary symbol
top(𝑆) to distinguish the root of the syntax tree, as well as a nullary symbol end to signal the end
of productions along the right spine. Terminals 𝑎 ∈ Σ are represented as nullary symbols term(𝑎).
See below with a grammar on the left and its syntax tree on the right.

𝑆 −→ 𝑎 𝑆 𝑏 | 𝑐

top(𝑆)
lhs(𝑆)·

term(𝑎) ·

rhs(𝑆) term(𝑏)

term(𝑐) end

7.2 Decidable Learning for Context-Free Grammars

We want a program that evaluates a CFG syntax tree 𝐺 to verify whether𝑤 ∈ 𝐿(𝐺) for an input
word𝑤 . What kind of state is needed? Intuition suggests the Facet evaluator will be similar to the
one for regular expressions, and that we should use pairs of positions. The main difference is the
more flexible recursion afforded by nonterminals. Consider reading the syntax tree above starting
at the root labeled by top(𝑆), with “𝑎 𝑆 𝑏” in the left subtree and the rest of the productions on the
right. To verify that𝑤 is generated by 𝑆 , the program should move to the right-hand sides of the two
𝑆-productions and check whether𝑤 is generated by either of these. Concatenation in the right-hand
sides of productions can be handled just like for regular expressions by guessing a split for𝑤 and
then verifying the guess in the subtrees. But upon reading, say, rhs(𝑆) in the subtree for “𝑎 𝑆 𝑏”,
the program should navigate up to find the 𝑆 productions and enter the subtrees corresponding
to their right-hand sides in order to parse the current subword and verify its membership in 𝐿(𝑆).
This is accomplished by entering a state reset (𝑆) that causes the program to navigate to the root of
the syntax tree and then move downward in a state find (𝑆) to find and enter the right-hand sides
of all productions for 𝑆 .

The recursion afforded by the nonterminals introduces a subtlety when verifying non-membership
of a word in the grammar (similar to the subtlety discussed for CTL path quantifiers in Section 4.4).
We return to this point after formalizing the membership checking part of the program.

7.2.1 Verifying Membership. We write a program CFG that evaluates an input CFG syntax tree 𝐺
over a word𝑤 and verifies that𝑤 ∈ 𝐿(𝐺). The states consist of ordered pairs of word positions as
well as some extra information related to moving up and down on the syntax tree, along with duals:

Asp(𝑤) B {𝑥, dual(𝑥) : 𝑥 ∈ 𝑋 (𝑤)}
𝑋 (𝑤) B subs(𝑤) ∪ {(𝑠, find (𝐴)), (𝑠, reset (𝐴)) : 𝑠 ∈ subs(𝑤), 𝐴 ∈ NT }

subs(𝑤) B {(𝑙, 𝑟) : 1 ≤ 𝑙 ≤ 𝑟 ≤ |𝑤 | + 1}

Signature functions are the same as those for regular expressions. The clauses for CFG (duals
omitted) are shown in Figure 7. The program is designed to start from the state reset (𝑆), from
which it proceeds to find and enter each of the productions for the starting nonterminal 𝑆 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 19

CFG(𝑤, (𝑙, 𝑟), 𝑛) B match 𝑛.l with

· → any (_𝑥. CFG(𝑤, (𝑙, 𝑥), 𝑛.c1) and CFG(𝑤, (𝑥, 𝑟), 𝑛.c2) [𝑙, 𝑟]
rhs(𝑧) → CFG(𝑤, (𝑙, 𝑟), reset (𝑧), 𝑛.up)
term(𝑥) → 𝑟 = 𝑙 + 1 and 𝑤 (𝑙) = 𝑥

CFG(𝑤, (𝑙, 𝑟), reset (𝑧), 𝑛) B match 𝑛.l with

top(𝑧) → CFG(𝑤, (𝑙, 𝑟), 𝑛.c1) or CFG(𝑤, (𝑙, 𝑟), find (𝑧), 𝑛.c2)
top(𝑥) → CFG(𝑤, (𝑙, 𝑟), find (𝑧), 𝑛.c2)
_ → CFG(𝑤, (𝑙, 𝑟), reset (𝑧), 𝑛.up)

CFG(𝑤, (𝑙, 𝑟), find (𝑧), 𝑛) B match 𝑛.l with

lhs(𝑧) → CFG(𝑤, (𝑙, 𝑟), 𝑛.c1) or CFG(𝑤, (𝑙, 𝑟), find (𝑧), 𝑛.c2)
lhs(𝑥) → CFG(𝑤, (𝑙, 𝑟), find (𝑧), 𝑛.c2)

Fig. 7. CFG evaluates an input CFG syntax tree 𝐺 pointed to by 𝑛 against word𝑤 and verifies that𝑤 ∈ 𝐿(𝐺).

Consider the operation of CFG over a word𝑤 and a grammar𝐺 that has a production like𝐴 → 𝐴𝐴.
Notice that the program could read this production arbitrarily many times in the same state by
always choosing to split𝑤 into 𝜖 and𝑤 when reading the right-hand side “𝐴𝐴”. This would cause it
to verify recursively that 𝜖 ∈ 𝐿(𝐴) and𝑤 ∈ 𝐿(𝐴), which could repeat again and again. Nevertheless,
if indeed𝑤 ∈ 𝐿(𝐺), then there is a finite proof for (𝑤, root (𝐺),C (CFG), ((1, |𝑤 | + 1), reset (𝑆))) ⇓𝑝
that can be obtained by following any correct derivation of 𝑤 from the grammar. The case for
𝑤 ∉ 𝐿(𝐺) is more subtle.

7.2.2 Verifying Non-Membership. Suppose now that 𝑤 ∉ 𝐿(𝐴) for a production like 𝐴 → 𝐴𝐴.
How should CFG verify this? There is no derivation to follow, and the program might loop forever
by entering the right-hand side and reading 𝐴𝐴, which will cause it to read all 𝐴 productions,
which will cause it to read 𝐴𝐴, and so on, with no guarantee that subwords become smaller in each
recursive call. This termination issue can be dealt with in a few ways, e.g., by adding states to keep
track of the depth of recursion. But there is a simpler solution.
It turns out that the duals for the CFG clauses in Figure 7 are sufficient for verifying non-

membership, provided all input grammars are in Greibach normal form (GNF). Productions in GNF
grammars have the form 𝐴 → 𝑎(NT)∗, with 𝑎 ∈ Σ and 𝐴 ∈ NT . Intuitively, this restriction helps
because it makes proofs of non-membership finite: subwords must become smaller each time the
program recursively checks a given nonterminal. To see this, consider verifying aba ∉ 𝐿(𝑆) for the
GNF grammar:

𝑆 −→ 𝑎 𝑆 | 𝑏

The word aba is clearly not generated by the second production. To show it is not generated by the
first, we show there is no way to split aba into𝑤1𝑤2 so that𝑤1 is generated by 𝑎 and𝑤2 is generated
by 𝑆 . If𝑤1 ≠ 𝑎 then the subproof for that split can end. Otherwise𝑤1 = 𝑎, and thus |𝑤2 | < |𝑤 |, and
hence the subproof for𝑤2 ∉ 𝐿(𝑆) will be finite by induction on word length. For any GNF grammar
𝐺 and word𝑤 ∉ 𝐿(𝐺), there is a finite proof for (𝑤, root (𝐺),C (CFG), dual((1, |𝑤 | +1), reset (𝑆))) ⇓𝑝 ,
and the argument does not in fact rely on the precise form of GNF productions; it works for more
general productions of the form 𝐴 → 𝛼 with 𝛼 ∈ (Σ ⊔ NT)∗Σ(Σ ⊔ NT)∗, i.e., those that involve at
least one terminal. We call a grammar productive if each of its productions meets this requirement.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

20 P. Krogmeier, P. Madhusudan

As long as input grammars are productive, the dual clauses for those from Figure 7 correctly verify
non-membership. Note that all context-free languages can be represented by productive CFGs,
provided we append an empty production to include the empty word if needed. Therefore, we
assume that the input meta-grammar 𝒢 encodes only productive CFGs7.

Theorem 6. CFG separation for finite sets of words P , N , and grammar 𝒢 enforcing productivity,
is decidable in time 𝒪(2poly (𝑘) · |𝒢 |), where 𝑘 =𝑚𝑛2 · |NT |, 𝑛 = max𝑤∈𝑃∪𝑁 |𝑤 |, and𝑚 = |𝑃 | + |𝑁 |.

Proof Sketch. Fix a word𝑤 . For every (𝑖, 𝑗) ∈ subs(𝑤) and for every 𝐺 we have that𝑤 (𝑖, 𝑗) ∈
𝐿(𝐺) if and only if (𝑤, root (𝐺),C (CFG), ((𝑖, 𝑗), reset (𝑆))) ⇓𝑝 . Similarly, we have 𝑤 (𝑖, 𝑗) ∉ 𝐿(𝐺) if
and only if (𝑤, root (𝐺),C (CFG), dual((𝑖, 𝑗), reset (𝑆))) ⇓𝑝 . The proof is by induction on 𝑤 and 𝐺 .
We have |Asp(𝑤) | = 𝒪(|𝑤 |2 · |NT |) and the theorem follows by Theorem 1 and Corollary 1. □

8 FIRST-ORDER LOGIC OVER RATIONAL NUMBERS WITH ORDER

In this section, we consider learning first-order logic queries over an infinite domain, namely, the
structure (Q, <) consisting of the rational numbers Q with the usual linear order <. The learning
problem requires labeled 𝑘-tuples of rational numbers to be separated by a query in FO

𝑘 , i.e., a
formula in first-order logic with 𝑘 variables. We derive a decision procedure by writing a Facet
evaluator for FO𝑘 over (Q, <).

8.1 LearningQueries over Rational Numbers with Order

We consider the following problem.

Problem (Learning FO𝑘 Queries over (Q, <)). Given finite sets P and N of 𝑘-tuples over Q and a
grammar 𝒢 for FO𝑘 over (Q, <), synthesize𝜑 (𝑥) ∈ 𝐿(𝒢) such that 𝑃 ⊆ {𝑡 ∈ Q𝑘 | (Q, <), 𝑡 |= 𝜑 (𝑥)}8
and 𝑁 ⊆ {𝑡 ∈ Q𝑘 | (Q, <), 𝑡 ̸ |= 𝜑 (𝑥)}, or declare no such formula exists.

A ranked alphabet Δ for FO𝑘 has, for any variables 𝑥,𝑦, the unary symbols “∀𝑥”, “∃𝑥” and nullary
symbols “𝑥 < 𝑦”, “𝑥 = 𝑦”, in addition to the symbols for Boolean operations. Note that, in this
problem, the class of structuresℳ for the language is the set Q𝑘 , and so a single “structure” is a
tuple of rationals 𝑡 ∈ Q𝑘 . For 𝑡 ∈ Q𝑘 , the semantics is given by 𝑡 |= 𝜑 ⇔ (Q, <), 𝑡 |= 𝜑 .

8.2 Decidable Learning for First-Order LogicQueries over Rationals

Given 𝑡 ∈ Q𝑘 and 𝜑 ∈ FO
𝑘 , what semantic information do we need to verify (Q, <), 𝑡 |= 𝜑? Consider

evaluating a query 𝜑 (𝑥,𝑦, 𝑧) on 𝑡 = (1/2, 3, 4/3) ∈ 𝑃 . Our program might start with an assignment
𝛾 that lets it remember (𝑥,𝑦, 𝑧) maps to (1/2, 3, 4/3). With the right functions, it can easily verify
atomic formulas by simply checking 𝛾 (𝑥) < 𝛾 (𝑦) or 𝛾 (𝑥) = 𝛾 (𝑦). When the program reads, say,
“∃𝑥”, it must carry forward some finite amount of information, which thus excludes tracking the
precise values for the variables, of which there are infinitely many.
The main idea is that evaluating atomic formulas does not require the precise values of the

variables: the order between variables is all that is needed to evaluate FO𝑘 formulas over (Q, <). In our
example, we have 𝑡 = (1/2, 3, 4/3) corresponding to the assignment {𝑥 ↦→ 1/2, 𝑦 ↦→ 3, 𝑧 ↦→ 4/3}, and so
the program begins in a state encoding that 𝑥 < 𝑧 < 𝑦. Suppose it reads the formula ∃𝑥∀𝑦 (𝑥 < 𝑦).
First it reads “∃𝑥” and branches (disjunctively) on all of the finitely-many distinguishable choices
for where to place 𝑥 relative to the other variables while leaving the others in the same relative
positions. We preserve 𝑧 < 𝑦, but 𝑥 can appear in any of several positions: 𝑥 < 𝑧 < 𝑦, 𝑥 = 𝑧 < 𝑦,

7Alternatively, we can use another automaton to verify that input trees encode productive grammars. The product of this
automaton with the meta-grammar automaton 𝒜𝒢 can itself be viewed as a meta-grammar which enforces productivity.
8We are abusing notation and treating 𝑡 , a 𝑘-tuple of rationals, as an assignment to the 𝑘 , ordered free variables of 𝜑 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 21

Rat(𝑡, ≳, 𝑛) B match 𝑛.l with

∀𝑥 → all (_𝑝. Rat(𝑡, 𝑝, 𝑛.c1)) place(𝑥, ≳)
∃𝑥 → any (_𝑝. Rat(𝑡, 𝑝, 𝑛.c1)) place(𝑥, ≳)
∧ → Rat(𝑡, ≳, 𝑛.c1) and Rat(𝑡, ≳, 𝑛.c2)
∨ → Rat(𝑡, ≳, 𝑛.c1) or Rat(𝑡, ≳, 𝑛.c2)
¬ → Rat(𝑡, dual(≳), 𝑛.c1)
𝑥 < 𝑧 → if lt (𝑥, 𝑧, ≳) then True else False

𝑥 = 𝑧 → if eq(𝑥, 𝑧, ≳) then True else False

Fig. 8. Rat evaluates formula 𝜑 pointed to by 𝑛 against a tuple 𝑡 of rational numbers and verifies (Q, <), 𝑡 |= 𝜑 .

𝑧 < 𝑥 < 𝑦, 𝑧 < 𝑥 = 𝑦, 𝑧 < 𝑦 < 𝑥 . From each of these states the program reads “∀𝑦” and branches
(conjunctively) on every choice for where to place 𝑦. It eventually rejects the formula because 𝑦
can always be placed strictly below 𝑥 in the second branching step.

Figure 8 shows a program Rat that evaluates FO𝑘 formulas over tuples of rational numbers. The
states of Rat record an ordering between 𝑘 variables from a set 𝑉 , including whether two variables
are equal, and thus they correspond to the total preorders on 𝑉 , denoted pre(𝑉). We use “≳” as a
pattern variable to denote a preorder. For a given tuple 𝑡 we have

Asp(𝑡) B { ≳, dual(≳) : ≳ ∈ pre(𝑉) } .

Signature functions include Boolean functions for checking ordering and equality in a given
preorder ≳, which we denote by lt (𝑥, 𝑧, ≳) and eq(𝑥, 𝑧, ≳) and define by:

geq(𝑥, 𝑧, ≳) B 𝑥 ≳ 𝑧 eq(𝑥, 𝑧, ≳) B 𝑥 ≳ 𝑧 ∧ 𝑧 ≳ 𝑥

lt (𝑥, 𝑧, ≳) B ¬geq(𝑥, 𝑧, ≳) neq(𝑥, 𝑧, ≳) B ¬eq(𝑥, 𝑧, ≳)

State functions include place(𝑥, ≳), which computes the set of all total preorders that place 𝑥 ∈ 𝑉

in a new position but agree with ≳ on variables in 𝑉 \ {𝑥}, defined as:

place(𝑥, ≳) B { ≳′ ∈ pre(𝑉) : 𝑦 ≳′ 𝑧 ⇔ 𝑦 ≳ 𝑧, ∀𝑦, 𝑧 ∈ 𝑉 \ {𝑥} }

Theorem 7. Learning queries in FO
𝑘 over the rational numbers with order, with sets of 𝑘-tuples

P and N and grammar 𝒢, is decidable in time 𝒪(2poly (𝑚𝑘𝑘) · |𝒢 |), where𝑚 = |P | + |N |.

Proof Sketch. Follows reasoning from previous sections and uses Theorem 1 and Corollary 1.
For 𝑡 ∈ Q𝑘 and a set 𝑉 of 𝑘 variables, we have |Asp(𝑡) | = 2|pre(𝑉) | = 𝒪(𝑘𝑘). □

Remark. Structures like (Q, <) have a special kind of automorphism group, called an oligomorphic
group (see [Hodges 1993]). Oligomorphic automorphism groups have finitely-many orbits in their
action on 𝑘-tuples from the domain of the structure, for every 𝑘 . In the case of learning queries over
(Q, <), the number 𝑘 is fixed, and the Facet program evaluates formulas by keeping track of these
finitely-many orbits. It checks atomic formulas in a given orbit represented by a total preorder on
variables, and when evaluating quantifiers it is able to move to all “nearby” orbits. There are many
other examples of such structures, e.g. those appearing in constraint satisfaction problems over
infinite domains (see [Bodirsky 2021]). It would be interesting to explore decidable learning results
in more domains like these.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

22 P. Krogmeier, P. Madhusudan

9 DECIDABLE LEARNING FOR STRING PROGRAMS

In this section, we consider Gulwani’s language for string programming [Gulwani 2011], which is
designed to express transformations of a sequence 𝑖 of input strings into an output string 𝑜 in the
context of spreadsheets. This language, which we refer to as String, turns out to be FAC, with the
caveat that loops must use variables from a finite set. We next give an overview of the syntax and
semantics of String; details can be found in the original paper [Gulwani 2011]. Then we discuss
how to implement a Facet evaluator that reads String syntax trees and checks whether they map
an input sequence 𝑖 to an output 𝑜 . The language, being one used in practice, is considerably more
complex than our other examples, and so we only sketch the main ideas.

9.1 String Overview

Programs in String map finitely-many input strings 𝑣 𝑗 to an output 𝑜 . A program 𝑃 ∈ String
consists of a switch statement Switch((𝜑1, 𝑒1), ... , (𝜑𝑛, 𝑒𝑛)) that chooses the expression 𝑒𝑖 whose con-
dition 𝜑𝑖 is the first in the sequence that is true. The 𝜑𝑖 are DNF formulas over atomsMatch(𝑣 𝑗 , 𝑟 , 𝑘),
which hold if at least 𝑘 matches for a regular expression 𝑟 can be found in the input 𝑣 𝑗 . The 𝑒𝑖 in
the switch statement have the form Concatenate(𝑓1, ... , 𝑓𝑛). They concatenate expressions 𝑓𝑖 that
come in three flavors: (1) SubStr(𝑣 𝑗 , 𝑝1, 𝑝2) selects the substring in 𝑣 𝑗 between positions 𝑝1 and
𝑝2, (2) ConstStr(𝑠) denotes a string literal 𝑠 , and (3) Loop(_𝑥. 𝑒) iteratively appends the result of
evaluating 𝑒 until that result is ⊥, which is a special value for failure. During loop iteration 𝑖 , the
variable 𝑥 is bound to 𝑖 in 𝑒 .

The positions 𝑝𝑖 in SubStr(𝑣 𝑗 , 𝑝1, 𝑝2) are either constant integers CPos(𝑘) or they have the form
Pos(𝑟1, 𝑟2, 𝑐), where the 𝑟𝑖 are regular expressions and 𝑐 is a linear integer expression built from
constants and loop variables, e.g. 2𝑥 + 3. The expression Pos(𝑟1, 𝑟2, 𝑐) is evaluated with respect to
𝑣 𝑗 , and returns a position 𝑡 such that just to the left of 𝑡 in 𝑣 𝑗 there is a match for 𝑟1 and starting
at 𝑡 there is a match for 𝑟2. Furthermore, it returns the 𝑐 th such position, or ⊥ if not enough such
positions exist. Note that regular expressions were restricted in String to use Kleene star and
disjunction only in a particular way, which we ignore. It is no trouble to write a Facet evaluator
for a generalization of String that allows unrestricted (extended) regular expressions like those
from Section 5.

Consider a program that extracts capital letters of an input string ([Gulwani 2011], example 5).
Input 𝑣1 Output 𝑜
Principles Of Programming Languages POPL

Program: Loop(_𝑥 .Concatenate(SubStr2(𝑣1, UpperTok, 𝑥)))
where SubStr2(𝑣 𝑗 , 𝑟 , 𝑐) ≡ SubStr(𝑣 𝑗 , Pos(𝜖, 𝑟, 𝑐), Pos(𝑟, 𝜖, 𝑐))

This program uses SubStr2(𝑣 𝑗 , 𝑟 , 𝑐) to compute the 𝑐 th match of the regular expression 𝑟 in 𝑣 𝑗 . This
is used to extract the 𝑥 th upper case letter in iteration 𝑥 of the loop, which is then appended to
previously extracted letters. The loop exits when the body evaluates to ⊥, which happens when
there are no more matches for UpperTok.

9.2 Decidable Learning for String

We describe how a Facet program should evaluate the constructs in String. Fix a set of input
strings 𝑖 = 𝑣1, . . . , 𝑣𝑛 and an output string 𝑜 . The evaluator reads 𝑃 ∈ String and checks that it
maps 𝑖 to 𝑜 . We mention specific choices for representing syntax trees as needed.
The Switch statement can be modeled with a ternary symbol Switch(𝜑, 𝑒, rest), where rest

represents the rest of the cases with nested operators of the same kind. Upon reading Switch, the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 23

program branches to verify either the conditional 𝜑1 holds and 𝑒1 produces 𝑜 or 𝜑1 does not hold
and the rest of the Switch produces 𝑜 .
The DNF formulae 𝜑𝑖 can be easily evaluated with the Boolean operators in Facet. An atom

Match(𝑣𝑖 , 𝑟 , 𝑘) can be represented with a binary symbol Match𝑣𝑖 (𝑟, 𝑘), one for each 𝑣𝑖 , with right
child a unary representation of integer 𝑘 , i.e. 𝑠𝑘 (0). To check Match𝑣𝑖 (𝑟, 𝑠𝑘 (0)), the program
evaluates the right child to determine the value of 𝑘 . Crucially, it can reject if 𝑘 exceeds |subs(𝑣𝑖) |,
which upper bounds the maximum number of matches for any regular expression over 𝑣𝑖 . Having
determined 𝑘 , the program can branch over all

(
𝑁
𝑘

)
combinations of subwords that could witness the

requisite 𝑘 matches, with 𝑁 = |subs(𝑣𝑖) |. For each subword, the program executes Reg (Figure 5)
as a subroutine to check whether it matches the regular expression in the left child.

It remains to interpret 𝑒 and verify it produces an output 𝑜 . We represent Concatenate(𝑓1, ... , 𝑓𝑛)
in a nested way like Switch, and binary Concatenate(𝑓 , 𝑓 ′) is evaluated as for regular expressions
by branching on all ways to split 𝑜 (or one of its subwords) into consecutive subwords𝑤 and𝑤 ′,
with 𝑓 and 𝑓 ′ then verified to produce𝑤 and𝑤 ′.

The expressions 𝑓 are verified to yield a given word as follows. Literals ConstStr(𝑠) are repre-
sented with nested concatenation and thus follow the same idea as Concatenate(𝑓 , 𝑓 ′). Substrings
SubStr(𝑣 𝑗 , 𝑝1, 𝑝2) are modeled with binary symbols SubStr𝑣𝑗 (𝑝1, 𝑝2), one for each 𝑣 𝑗 . Having deter-
mined the values of positions 𝑝𝑖 , the program can simply use a function for equality of subwords.
Constant positions CPos(𝑘) are determined as before except the program rejects if 𝑘 exceeds |𝑣 𝑗 |.
To evaluate Pos(𝑟1, 𝑟2, 𝑐), represented as a ternary operator, the program guesses a position 𝑡 in 𝑣 𝑗
and verifies existence of matches for 𝑟1 and 𝑟2 to the left and right of 𝑡 . It further verifies there are
𝑐 −1, but not 𝑐 such positions to the left of 𝑡 . This is accomplished by branching on the possible

(
𝑡−1
𝑐−1

)
combinations of positions and checking for the requisite matches, and then checking the opposite
for each of the

(
𝑡−1
𝑐

)
combinations. Finally, integer expressions 𝑐 = 𝑘1𝑥 + 𝑘2 can be evaluated by

hardcoding rules for bounded arithmetic, because the maximum value that loop variables can take
is bounded by |𝑜 |, which we discuss next.
Provided the number of loop variables is finite, the program can evaluate loops using a map 𝛾

from variables {𝑥𝑖 } to integers. The integers are bounded because the loop body 𝑒 must produce
a string of non-zero length (otherwise the loop terminates), and loop expressions are only ever
verified to produce words of length no more than |𝑜 |. Since each iteration must productively
decompose a word of length bounded by |𝑜 |, we can use |𝑜 | as a bound on the range of 𝛾 . Thus
the 𝛾 have finite domain and range and require finitely-many states. Now, suppose the program
encounters a loop Loop(_𝑥 . 𝑒) with current variable map 𝛾 , and suppose it must verify the loop
produces a word𝑤 . It first sets 𝛾 (𝑥) = 1. Then it guesses a decomposition of𝑤 into𝑤1𝑤2 such that
𝑒 evaluated with 𝛾 produces𝑤1 and Loop(_𝑥 . 𝑒) evaluated with 𝛾 [𝑥 ↦→ 𝛾 (𝑥) + 1] produces𝑤2.

We conclude by Theorem 1 that learning String programs from examples is decidable, even for
the generalization that allows unrestricted regular expressions (which [Gulwani 2011] disallows).

10 RELATEDWORK

Expression Learning and Program Synthesis. Our approach is inspired by recent results for learning
in finite-variable logics [Krogmeier and Madhusudan 2022]. Proofs in that work involve direct
automata constructions, and the results can be obtained with our meta-theorem by writing suitable
evaluators. Our work generalizes the tree automata approach to general symbolic languages by
separating decidable learning theorems into two parts: (1) identifying the underlying semantic
aspects of the language in question and (2) programming with this new datatype in order to evaluate
arbitrary expressions. The finite-variable restriction for the logics considered in [Krogmeier and
Madhusudan 2022] leads to finitely-many aspects— a finite set of assignments to some 𝑘 variables.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

24 P. Krogmeier, P. Madhusudan

But, as our work shows, this restriction is not necessary for decidable learning; several languages we
consider do not use variables and it is unclear what a corresponding variable restriction would mean.
Usual translations of regular expressions to monadic second-order logic formulae, for instance,
do not stay within a finite-variable fragment. Nevertheless, the recursive semantics of regular
expressions involves subwords, and there are only finitely-many subwords of a given word, which
makes regular expressions finite-aspect checkable.

Practical algorithms for some of the learning problems we address have been explored previously,
e.g. learning LTL [Neider and Gavran 2018], regular expressions [Fernau 2009; Li et al. 2008], and
context-free grammars [Langley and Stromsten 2000; Sakakibara 2005; Vanlehn and Ball 1987], but
decidable learning results with syntactic restrictions have not been established.

Other recent work studies the parameterized complexity of learning queries in first-order logic
(FO) [van Bergerem et al. 2022], algorithms for learning in FO with counting [van Bergerem 2019],
and learning in description logics [Funk et al. 2019]. Applications for FO learning have emerged,
e.g., synthesizing invariants [Garg et al. 2014, 2015; Hance et al. 2021; Koenig et al. 2020, 2022; Yao
et al. 2021] and learning program properties [Astorga et al. 2019, 2021; Miltner et al. 2020].
Expression learning is connected to program synthesis, and in particular, programming by

example [Polozov and Gulwani 2015], where practical algorithms have been used to automate
tedious programming tasks, e.g. synthesizing string programs [Cambronero et al. 2023; Gulwani
2011], bit-manipulating programs from templates [Solar-Lezama et al. 2006], or functional programs
from examples and type information [Osera and Zdancewic 2015; Polikarpova et al. 2016]. Synthesis
with grammar restrictions follows work in the SyGus [Alur et al. 2015] framework.

Automata for Synthesis. Connections between automata and synthesis go back to Church’s
problem [Church 1963] on synthesizing finite state machines that manipulate infinite streams of
bits to meet a given logical specification. This was solved first by Büchi and Landweber [Buchi and
Landweber 1969] for specifications in monadic second-order logic, and later also by Rabin [Rabin
1972]. The idea was to translate the specification into an automaton, and to view synthesis of
a transducer as the problem of synthesizing a finite-state winning strategy in a game played
on the transition graph of the automaton. The result was a potentially large transition system,
not a compact program. The use of tree automata that work over syntax trees was advanced
in [Madhusudan 2011] and has been used for practical algorithms in several program synthesis
contexts [Handa and Rinard 2020; Koppel et al. 2022; Miltner et al. 2022; Wang et al. 2017a,b, 2018].

Decidability in Synthesis. Many foundational decidability results in logic and synthesis of finite-
state systems rely on reductions to automata emptiness [Buchi and Landweber 1969; Grädel et al.
2002; Kupferman et al. 2000, 2010; Pnueli and Rosner 1989, 1990; Rabin 1972]. Recent decidability
results for synthesis of uninterpreted programs involved a reduction to emptiness of two-way tree
automata [Krogmeier et al. 2020]. Decision procedures for SyGuS problems in linear and conditional
linear integer arithmetic [Farzan et al. 2022; Hu et al. 2020] used grammar flow analysis [Möncke
and Wilhelm 1991] and an abstraction based on semi-linear sets.

Automata for Learning vs. Graph Algorithms. There is a large body of work, e.g. see [Courcelle and
Engelfriet 2012; Habel 1992], on checking properties of graphs expressed in monadic second-order
logic. These results involve translating logical properties into automata that read decompositions
of graphs and accept if the represented graph has the property. Our work is very differently
motivated: we are interested in properties of syntax trees defined over arbitrary fixed structures
(e.g. unrestricted graphs like cliques or grids), and the properties are motivated by semantics of
complex symbolic languages. Our automata constructions for learning are, conceptually, dual to
these constructions from logical specifications.

Definability in Monadic Second-Order Logic. Foundational results from logic and automata theory
connect definability in monadic second-order logic and recognizability by finite machines. These

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 25

results span various classes of structures, including finite words and trees [Büchi 1960; Doner 1970;
Elgot 1961; Thatcher and Wright 1968; Trakhtenbrot 1961], infinite words and trees [Büchi 1990;
Rabin 1969], and graphs with bounded tree width [Courcelle 1990]. It follows by definition that
for any FAC language, the semantics over any fixed structure can be captured by a sentence in
monadic-second order logic over syntax trees.

11 CONCLUSION

We introduced a powerful recipe for proving that a symbolic language has decidable learning. It
involves writing a program, i.e. semantic evaluator, that operates over mathematical structures and
expression syntax trees for a given symbolic language. Finite-aspect checkable languages have the
property that the semantics of any expression 𝑒 can be expressed in terms of a finite amount of
semantic information (aspects) that depends on the structure over which evaluation occurs but not
on the size of 𝑒 . This addresses a central question in expression learning with version space algebra
(VSA) techniques, especially those realized as tree automata: for which symbolic languages are these
learning algorithms possible? One prevailing answer in the literature is that language operators
should have finite inverses (e.g., see [Cambronero et al. 2023; Polozov and Gulwani 2015]). When
operators have finite inverses a top-down tree automaton can be effectively constructed. Our work
suggests a weaker requirement, namely, that it be sufficient to evaluate arbitrarily large expressions
or programs on specific examples by traversing syntax trees up and down using memory that is
bounded by a function solely of the size of the example. For instance, in Section 8 we considered
learning queries over the rational numbers with order. The “inverse” of 𝑥 < 𝑦 is an infinite set of
ordered pairs of rational numbers. Nevertheless, to evaluate a formula for a specific example, all
that is needed is a bounded number of bits to encode the current ordering of variables.
We have also presented a set of interesting FAC languages that have nontrivial semantic defi-

nitions using finitely-many aspects, and new decidable learning results for each. We believe that
many more can be readily found using our meta-theorem.

Tree automata underlie many practical algorithms for synthesis based on compactly representing
large spaces of programs and expressions [Gulwani 2011; Handa and Rinard 2020; Koppel et al. 2022;
Miltner et al. 2022; Wang et al. 2017a,b, 2018]. The main idea is to efficiently represent classes of
expressions which are equivalent with respect to some examples. This idea originates with version
space algebra [Mitchell 1982, 1997], which essentially amounts to a restricted form of tree automata
working over trees of bounded depth [Koppel 2021]. Bringing the full tree automata toolkit to bear
on learning and synthesis, e.g. two-way power and alternation, recognizes tree automata as a kind
of basic building block for a version space algebra over tree automata. The learning constructions
from our work use semantic evaluators (compact, effective descriptions of tree automata) as a basic
building block and combine them in specific ways to address specific learning problems. Given this
uniform technique of using tree automata as a programming language, it would be interesting to
build compact representations and incremental algorithms for their construction and emptiness
that yield generic learning algorithms which scale. Bounding the depth of expressions may make
some of the constructions from this paper feasible.
Tree automata have also been used in many other contexts in computer science. In fixed-

parameter tractable algorithms (e.g. Courcelle’s theorem [Flum and Grohe 2006]) and finite model
theory, they have been used to obtain generic algorithms forMSO-definable properties that work
over tree decompositions of graphs, while in temporal logic verification [Esparza et al. 2021] they
have been used as acceptors of correct behaviors of systems. Their use for learning in symbolic
languages is an emerging new application of tree automata. It would be interesting to study the
theory of FAC languages in terms of expressiveness, language-theoretic properties, and alternative
characterizations.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

26 P. Krogmeier, P. Madhusudan

REFERENCES

Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas Kress-Gazit, P. Madhusudan,
Milo M. K. Martin, Mukund Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthesis. In Dependable Software Systems Engineering. NATO
Science for Peace and Security Series, D: Information and Communication Security, Vol. 40. IOS Press, 1–25.

Angello Astorga, P. Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao Xie. 2019. Learning Stateful Preconditions
modulo a Test Generator. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 775–787. https://doi.org/10.
1145/3314221.3314641

Angello Astorga, Shambwaditya Saha, Ahmad Dinkins, Felicia Wang, P. Madhusudan, and Tao Xie. 2021. Synthesizing
Contracts Correct modulo a Test Generator. Proc. ACM Program. Lang. 5, OOPSLA, Article 104 (oct 2021), 27 pages.
https://doi.org/10.1145/3485481

Patrick Blackburn, Maarten de Rijke, and Yde Venema. 2001. Modal Logic. Cambridge University Press. https://doi.org/10.
1017/CBO9781107050884

Manuel Bodirsky. 2021. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press. https:
//doi.org/10.1017/9781107337534

J. Richard Büchi. 1990. On a Decision Method in Restricted Second Order Arithmetic. Springer New York, New York, NY,
425–435. https://doi.org/10.1007/978-1-4613-8928-6_23

J. Richard Buchi and Lawrence H. Landweber. 1969. Solving Sequential Conditions by Finite-State Strategies. Trans. Amer.
Math. Soc. 138 (1969), 295–311. http://www.jstor.org/stable/1994916

J. Richard Büchi. 1960. Weak Second-Order Arithmetic and Finite Automata.Mathematical Logic Quarterly 6, 1-6 (1960), 66–92.
https://doi.org/10.1002/malq.19600060105 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105

Thierry Cachat. 2002. Two-Way Tree Automata Solving Pushdown Games. Springer-Verlag, Berlin, Heidelberg, 303–317.
José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun Radhakrishna, Clint Simon, and Ashish Tiwari. 2023.

FlashFill++: Scaling Programming by Example by Cutting to the Chase. In Principles of Programming Languages. ACM
SIGPLAN, ACM. https://www.microsoft.com/en-us/research/publication/flashfill-scaling-programming-by-example-
by-cutting-to-the-chase/

Alonzo Church. 1963. Application of Recursive Arithmetic to the Problem of Circuit Synthesis. Journal of Symbolic Logic 28,
4 (1963), 289–290. https://doi.org/10.2307/2271310

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. 2007. Tree Automata
Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata. release October, 12th 2007.

Bruno Courcelle. 1990. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and
Computation 85, 1 (1990), 12–75. https://doi.org/10.1016/0890-5401(90)90043-H

Professor Bruno Courcelle and Dr Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic: A Language-
Theoretic Approach (1st ed.). Cambridge University Press, New York, NY, USA.

John Doner. 1970. Tree acceptors and some of their applications. J. Comput. System Sci. 4, 5 (1970), 406–451. https:
//doi.org/10.1016/S0022-0000(70)80041-1

Calvin C. Elgot. 1961. Decision Problems of Finite Automata Design and Related Arithmetics. Trans. Amer. Math. Soc. 98, 1
(1961), 21–51. http://www.jstor.org/stable/1993511

Javier Esparza, Orna Kupferman, and Moshe Y. Vardi. 2021. Verification. In Handbook of Automata Theory, Jean-Éric Pin
(Ed.). European Mathematical Society Publishing House, Zürich, Switzerland, 1415–1456.

Richard Evans and Edward Grefenstette. 2018. Learning Explanatory Rules from Noisy Data. J. Artif. Int. Res. 61, 1 (Jan.
2018), 1–64.

Azadeh Farzan, Danya Lette, and Victor Nicolet. 2022. Recursion Synthesis with Unrealizability Witnesses. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI 2022).
Association for Computing Machinery, New York, NY, USA, 244–259. https://doi.org/10.1145/3519939.3523726

Henning Fernau. 2009. Algorithms for learning regular expressions from positive data. Information and Computation 207, 4
(2009), 521–541. https://doi.org/10.1016/j.ic.2008.12.008

J. Flum and M. Grohe. 2006. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29953-X

Maurice Funk, Jean Christoph Jung, Carsten Lutz, Hadrien Pulcini, and Frank Wolter. 2019. Learning Description Logic
Concepts: When can Positive and Negative Examples be Separated?. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial Intelligence Organization,
1682–1688. https://doi.org/10.24963/ijcai.2019/233

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.
In Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham, 69–87.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3314221.3314641
https://doi.org/10.1145/3485481
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/9781107337534
https://doi.org/10.1017/9781107337534
https://doi.org/10.1007/978-1-4613-8928-6_23
http://www.jstor.org/stable/1994916
https://doi.org/10.1002/malq.19600060105
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.19600060105
https://www.microsoft.com/en-us/research/publication/flashfill-scaling-programming-by-example-by-cutting-to-the-chase/
https://www.microsoft.com/en-us/research/publication/flashfill-scaling-programming-by-example-by-cutting-to-the-chase/
https://doi.org/10.2307/2271310
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/S0022-0000(70)80041-1
https://doi.org/10.1016/S0022-0000(70)80041-1
http://www.jstor.org/stable/1993511
https://doi.org/10.1145/3519939.3523726
https://doi.org/10.1016/j.ic.2008.12.008
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.24963/ijcai.2019/233

Languages with Decidable Learning: A Meta-theorem 27

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2015. Quantified data automata for linear data structures:
a register automaton model with applications to learning invariants of programs manipulating arrays and lists. Formal
Methods in System Design 47, 1 (01 Aug 2015), 120–157. https://doi.org/10.1007/s10703-015-0231-6

Erich Grädel, Wolfgang Thomas, and Thomas Wilke (Eds.). 2002. Automata Logics, and Infinite Games: A Guide to Current
Research. Springer-Verlag, Berlin, Heidelberg.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’11). Association for
Computing Machinery, New York, NY, USA, 317–330. https://doi.org/10.1145/1926385.1926423

Annegret Habel. 1992. Graph-theoretic aspects of HRL’s. Springer Berlin Heidelberg, Berlin, Heidelberg, 117–144. https:
//doi.org/10.1007/BFb0013882

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. 2021. Finding Invariants of Distributed Systems: It’s a
Small (Enough) World After All. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21).
USENIX Association, 115–131. https://www.usenix.org/conference/nsdi21/presentation/hance

ShivamHanda andMartin C. Rinard. 2020. Inductive Program Synthesis over Noisy Data. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020). Association for Computing Machinery, New York, NY, USA, 87–98. https://doi.org/10.1145/3368089.3409732

Wilfrid Hodges. 1993. The countable case. Cambridge University Press, 323–359. https://doi.org/10.1017/CBO9780511551574.
009

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas Reps. 2020. Exact and Approximate Methods for Proving
Unrealizability of Syntax-Guided Synthesis Problems. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 1128–1142.
https://doi.org/10.1145/3385412.3385979

Radoslav Ivanov, Kishor Jothimurugan, Steve Hsu, Shaan Vaidya, Rajeev Alur, and Osbert Bastani. 2021. Compositional
Learning and Verification of Neural Network Controllers. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 92 (sep 2021),
26 pages. https://doi.org/10.1145/3477023

Michael J. Kearns and Umesh Vazirani. 1994. An Introduction to Computational Learning Theory. The MIT Press. https:
//doi.org/10.7551/mitpress/3897.001.0001

Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. 2020. First-Order Quantified Separators. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020). Association for
Computing Machinery, New York, NY, USA, 703–717. https://doi.org/10.1145/3385412.3386018

Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex Aiken. 2022. Inferring Invariants with Quantifier Alternations:
Taming the Search Space Explosion. In Tools and Algorithms for the Construction and Analysis of Systems, Dana Fisman
and Grigore Rosu (Eds.). Springer International Publishing, Cham, 338–356.

James Koppel. 2021. Version Space Algebras are Acyclic Tree Automata. https://doi.org/10.48550/ARXIV.2107.12568
James Koppel, Zheng Guo, Edsko de Vries, Armando Solar-Lezama, and Nadia Polikarpova. 2022. Searching Entangled

Program Spaces. Proc. ACM Program. Lang. 6, ICFP, Article 91 (aug 2022), 29 pages. https://doi.org/10.1145/3547622
Paul Krogmeier and P. Madhusudan. 2022. Learning Formulas in Finite Variable Logics. Proc. ACM Program. Lang. 6, POPL,

Article 10 (jan 2022), 28 pages. https://doi.org/10.1145/3498671
Paul Krogmeier and P. Madhusudan. 2023. Languages With Decidable Learning: A Meta-Theorem. https://doi.org/10.48550/

ARXIV.2302.05741
Paul Krogmeier, Umang Mathur, Adithya Murali, P. Madhusudan, and Mahesh Viswanathan. 2020. Decidable Synthesis

of Programs with Uninterpreted Functions. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.).
Springer International Publishing, Cham, 634–657.

Orna Kupferman, P. Madhusudan, P. S. Thiagarajan, and Moshe Y. Vardi. 2000. Open Systems in Reactive Environments:
Control and Synthesis. In CONCUR (Lecture Notes in Computer Science), Vol. 1877. Springer, 92–107.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. 2010. An Automata-Theoretic Approach to Infinite-State Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, 202–259. https://doi.org/10.1007/978-3-642-13754-9_11

Pat Langley and Sean Stromsten. 2000. Learning Context-Free Grammars with a Simplicity Bias. InMachine Learning: ECML
2000, Ramon López de Mántaras and Enric Plaza (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 220–228.

Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and H. V. Jagadish. 2008. Regular
Expression Learning for Information Extraction. In EMNLP.

P. Madhusudan. 2011. Synthesizing Reactive Programs. In Computer Science Logic (CSL’11) - 25th International Workshop/20th
Annual Conference of the EACSL (Leibniz International Proceedings in Informatics (LIPIcs)), Marc Bezem (Ed.), Vol. 12. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 428–442. https://doi.org/10.4230/LIPIcs.CSL.2011.428

Kenneth L. McMillan. 1992. Symbolic Model Checking: an approach to the state explosion problem. Ph.D. Dissertation. Carnegie
Mellon. thesis.pdf CMU Tech Rpt. CMU-CS-92-131.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

https://doi.org/10.1007/s10703-015-0231-6
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1007/BFb0013882
https://doi.org/10.1007/BFb0013882
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1145/3368089.3409732
https://doi.org/10.1017/CBO9780511551574.009
https://doi.org/10.1017/CBO9780511551574.009
https://doi.org/10.1145/3385412.3385979
https://doi.org/10.1145/3477023
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.48550/ARXIV.2107.12568
https://doi.org/10.1145/3547622
https://doi.org/10.1145/3498671
https://doi.org/10.48550/ARXIV.2302.05741
https://doi.org/10.48550/ARXIV.2302.05741
https://doi.org/10.1007/978-3-642-13754-9_11
https://doi.org/10.4230/LIPIcs.CSL.2011.428
thesis.pdf

28 P. Krogmeier, P. Madhusudan

Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig. 2022. Bottom-up Synthesis of Recursive
Functional Programs Using Angelic Execution. Proc. ACM Program. Lang. 6, POPL, Article 21 (jan 2022), 29 pages.
https://doi.org/10.1145/3498682

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3385412.3385967

Tom M. Mitchell. 1982. Generalization as search. Artificial Intelligence 18, 2 (1982), 203–226. https://doi.org/10.1016/0004-
3702(82)90040-6

Thomas M. Mitchell. 1997. Machine Learning (1 ed.). McGraw-Hill, Inc., USA.
Ulrich Möncke and Reinhard Wilhelm. 1991. Grammar flow analysis. In Attribute Grammars, Applications and Systems,

Henk Alblas and Bořivoj Melichar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 151–186.
Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad. 2014. Meta-interpretive learning:

application to grammatical inference. Machine Learning 94, 1 (01 Jan 2014), 25–49. https://doi.org/10.1007/s10994-013-
5358-3

Daniel Neider and Ivan Gavran. 2018. Learning Linear Temporal Properties. In 2018 Formal Methods in Computer Aided
Design (FMCAD). 1–10. https://doi.org/10.23919/FMCAD.2018.8603016

Daniel Neider, P. Madhusudan, Shambwaditya Saha, Pranav Garg, and Daejun Park. 2020. A Learning-Based Approach
to Synthesizing Invariants for Incomplete Verification Engines. Journal of Automated Reasoning 64, 7 (01 Oct 2020),
1523–1552. https://doi.org/10.1007/s10817-020-09570-z

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). Association for Computing
Machinery, New York, NY, USA, 619–630. https://doi.org/10.1145/2737924.2738007

Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science (sfcs
1977). 46–57. https://doi.org/10.1109/SFCS.1977.32

Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module. In POPL. ACM Press, 179–190.
Amir Pnueli and Roni Rosner. 1990. Distributed Reactive Systems Are Hard to Synthesize. In FOCS. IEEE Computer Society,

746–757.
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement Types.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16).
Association for Computing Machinery, New York, NY, USA, 522–538. https://doi.org/10.1145/2908080.2908093

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 107–126. https://doi.org/10.1145/2814270.
2814310

Michael O. Rabin. 1969. Decidability of Second-Order Theories and Automata on Infinite Trees. Trans. Amer. Math. Soc. 141
(1969), 1–35. http://www.jstor.org/stable/1995086

Michael Oser Rabin. 1972. Automata on Infinite Objects and Church’s Problem. American Mathematical Society, Boston, MA,
USA.

Yasubumi Sakakibara. 2005. Learning context-free grammars using tabular representations. Pattern Recognition 38, 9 (2005),
1372–1383. https://doi.org/10.1016/j.patcog.2004.03.021 Grammatical Inference.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching
for Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XII). Association for Computing Machinery, New York, NY, USA, 404–415.
https://doi.org/10.1145/1168857.1168907

James W. Thatcher and Jesse B. Wright. 1968. Generalized finite automata theory with an application to a decision problem
of second-order logic. Mathematical systems theory 2 (1968), 57–81. https://doi.org/10.1007/BF01691346

Boris A. Trakhtenbrot. 1961. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR 140, 326-329
(1961), 122–123.

Steffen van Bergerem. 2019. Learning Concepts Definable in First-Order Logic with Counting. In 2019 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). 1–13. https://doi.org/10.1109/LICS.2019.8785811

Steffen van Bergerem, Martin Grohe, and Martin Ritzert. 2022. On the Parameterized Complexity of Learning First-Order
Logic. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’22).
Association for Computing Machinery, New York, NY, USA, 337–346. https://doi.org/10.1145/3517804.3524151

Kurt Vanlehn and William Ball. 1987. A Version Space Approach to Learning Context-free Grammars. Machine Learning 2,
1 (01 Mar 1987), 39–74. https://doi.org/10.1023/A:1022812926936

Moshe Y. Vardi. 1998. Reasoning about the past with two-way automata. In Automata, Languages and Programming, Kim G.
Larsen, Sven Skyum, and Glynn Winskel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 628–641.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

https://doi.org/10.1145/3498682
https://doi.org/10.1145/3385412.3385967
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1016/0004-3702(82)90040-6
https://doi.org/10.1007/s10994-013-5358-3
https://doi.org/10.1007/s10994-013-5358-3
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1007/s10817-020-09570-z
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2814270.2814310
http://www.jstor.org/stable/1995086
https://doi.org/10.1016/j.patcog.2004.03.021
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1007/BF01691346
https://doi.org/10.1109/LICS.2019.8785811
https://doi.org/10.1145/3517804.3524151
https://doi.org/10.1023/A:1022812926936

Languages with Decidable Learning: A Meta-theorem 29

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017a. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.
Lang. 2, POPL, Article 63 (Dec. 2017), 30 pages. https://doi.org/10.1145/3158151

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Synthesis of Data Completion Scripts Using Finite Tree Automata. Proc.
ACM Program. Lang. 1, OOPSLA, Article 62 (Oct. 2017), 26 pages. https://doi.org/10.1145/3133886

Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational Program Synthesis. Proc. ACM Program. Lang. 2, OOPSLA,
Article 155 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276525

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated
Invariant Learning for Distributed Protocols. In 15th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21). USENIX Association, 405–421. https://www.usenix.org/conference/osdi21/presentation/yao

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A Data-Driven CHC Solver. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018). Association for Computing Machinery,
New York, NY, USA, 707–721. https://doi.org/10.1145/3192366.3192416

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

https://doi.org/10.1145/3158151
https://doi.org/10.1145/3133886
https://doi.org/10.1145/3276525
https://www.usenix.org/conference/osdi21/presentation/yao
https://doi.org/10.1145/3192366.3192416

30 P. Krogmeier, P. Madhusudan

A DETAILED DESCRIPTION OF Facet

Programs in Facet are parameterized by a language (ℒ,ℳ, |=), where the semantic function
(_ |= _) : ℒ ×ℳ → 𝐷 specifies the domain 𝐷 in which expressions are interpreted. A program
takes as input a pointer into the syntax tree for an expression 𝑒 ∈ ℒ as well as a structure𝑀 ∈ ℳ.
A program 𝑃 navigates up and down on 𝑒 using a set of pointers to move from children to parent
and parent to children in order to evaluate the semantics of 𝑒 over the structure𝑀 and verify that
𝑀 |= 𝑒 = 𝑑 for some 𝑑 ∈ 𝐷 .

A.1 Parameters

To write a Facet program we specify two things: (1) the language over which the program is
to operate and (2) the program’s auxiliary states, which correspond to semantic aspects, i.e. the
auxiliary information used in the definition of the language semantics9. Part (1) involves specifying
(a) the syntax trees for ℒ in terms of a ranked alphabet Δ and (b) the signature for structuresℳ,
including a set of functions used to access the data for a given𝑀 ∈ ℳ. Additionally, in part (a) we
specify an algebraic data type (ADT) that endows the symbols of Δ with extra structure in order to
allow programs to pattern match over the alphabet. As an example, suppose we model universal
quantification in first-order logic by adding to Δ a unary symbol “∀𝑥” for each variable 𝑥 from
some finite set of variables. We could then treat “∀” as a unary constructor to allow a program to
match over all alphabet symbols that represent a universally-quantified variable. We abuse notation
and write Δ for both the ranked alphabet and ADT when the context is clear.

Part (2) is accomplished by specifying an ADT for the program states. This ADT will typically be
infinite, but any fixed structure will use only a finite subset of it, provided the language is FAC. We
denote the state ADT by Asp and the subset pertaining to a given structure𝑀 by Asp(𝑀). In some
cases, Asp has little or no structure. For instance, in modal logic it consists of nullary constructors
for the nodes of a Kripke structure. In other cases, e.g., regular expressions (Section 5), we use a
pair constructor over positions in finite words with Asp = {(𝑖, 𝑗) ∈ N × N : 𝑖 ≤ 𝑗}. We will clarify
these choices in each setting as needed.

The ADTs are each associated with a set of patterns, which are built using the ADT constructors
together with variables from a set Var . We use 𝑥, 𝑧 ∈ Var as pattern variables; these should not be
confused with variables used in expressions ℒ. The sets of state and alphabet patterns are denoted
by Asp(Var) and Δ(Var), respectively. Note that we do not assume Asp has a finite signature. All
we will need is that Asp(𝑀) is finite for every 𝑀 and that state and alphabet pattern matching
is computable. For the latter, we assume a computable function match that computes a unifying
substitution for two members of Asp(Var) or Δ(Var) whenever possible.

A.2 Semantics

The semantics for Facet is given in Figure 9. It defines two relations

(𝑀,𝑛,C, 𝜎) ⇓𝑝 and (𝑀,𝑛,C, 𝑒) ⇓𝑒 .

The predicate ⇓𝑝 holds for program configurations (𝑀,𝑛,C, 𝜎), with C being the set of clauses
for the program, 𝑀 a structure, 𝑛 a pointer, and 𝜎 ∈ Asp(𝑀) a state. The predicate ⇓𝑒 holds for
expression configurations (𝑀,𝑛,C, 𝑒), with 𝑒 being an expression from the grammar in Figure 3.
The assertion (𝑀,𝑛,C, 𝜎) ⇓𝑝 can be read as follows: over the structure𝑀 and syntax tree pointed
to by 𝑛, the program consisting of clauses C terminates with success when started in the state 𝜎 .

9We sometimes use states and aspects interchangeably. But, occasionally we use aspects to distinguish auxiliary semantic
information, with which we need not associate any operational meaning, from the operational meaning associated with
states in the context of a program.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 31

Proofs for ⇓𝑝 involve finding the matching clause for a state 𝜎 and building a subproof for ⇓𝑒 for
the appropriate case of the match statement in the matching clause.

A.3 Details

A.3.1 Well-Formed Programs. We consider only well-formed programs, which have disjoint and
exhaustive clauses. That is, for every𝑀 ∈ ℳ and 𝜎 ∈ Asp(𝑀), there is precisely one clause 𝑐 for
which match(pat𝑐 , 𝜎) succeeds, where pat𝑐 denotes the state pattern for the clause 𝑐 .

We emphasize that variables in Facet programs are never bound to Facet expressions. They
are instead replaced either by components of the syntax tree data type or the state data type. For
example, a variable 𝑥 might be bound to position 2 in the word𝑤 = 𝑎𝑏𝑐 , while a variable 𝑦 might be
bound to the letter 𝑏. Variables are bound in Facet programs by the state pattern at the beginning
of each clause, by the alphabet patterns in each case of a match statement, and in all and any
expressions. Well-formed programs do not have free variables.

A.3.2 Computable Function Parameters. The functions 𝑔 ∈ 𝑆 appearing in any and all expressions
compute finite sets, e.g., elements or sets of elements from the domain of the structure. These
elements are then bound to variables in any and all expressions. For example, in a totally-ordered
structure like a word, we could use the function 𝑔(𝑙, 𝑟) = [𝑙, 𝑟], or a variant 𝑔′(𝑙, 𝑟) = [𝑙 + 1, 𝑟] to
compute sets of consecutive positions. For convenience we allow functions 𝑔 to occur in expressions
that denote states. For example, if states are pairs of word positions, we may write (2, 𝑔(𝑥)), which
can be evaluated to a state once 𝑥 is bound. The condition in the premise of the Call rule in Figure 9
uses a function called norm to reduce an expression like this to a state. The functions 𝑔 ∈ 𝑆 and
𝑓 ∈ 𝐵 in fact represent a family of functions, one for each 𝑀 ∈ ℳ. We write eval(𝑀,𝑔(𝑣)) and
eval(𝑀, 𝑓 (𝑣)) to denote the result of computing 𝑓 and 𝑔 in a structure𝑀 with arguments 𝑣 .

A.3.3 Negation. The reader may wonder why there is no negation in the expression syntax for
Facet and why the conditional for if expressions does not allow an arbitrary expression. These
apparent restrictions are only for simplicity. If we wanted to include negation and more general
conditionals, we could augment the states of any Facet program to track the parity of the number
of negations seen at any point in a program execution; but we prefer to keep this complexity out of
the semantics. The effect of negation can easily be accomplished by writing dual programs that
implement dual operations in particular states, as described in Section 4.4.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

32 P. Krogmeier, P. Madhusudan

Prog
𝜏 = match(𝑐𝑖 , 𝜎) 𝜏 ′ = match𝑐𝑖 (𝜏 (𝛼𝑘), 𝑛.l) (𝑀,𝑛,C, 𝜏 ′(𝜏 (𝑒𝑘))) ⇓𝑒

(𝑀,𝑛,C = { 𝑐1 . . . 𝑐𝑚 }, 𝜎) ⇓𝑝

Call
(𝑀,𝑛.𝑐,C, 𝜎 ′) ⇓𝑝 𝜎 ′ = norm(𝑀,𝜎 (𝑣))

(𝑀,𝑛,C, P(𝑀, 𝜎 (𝑣), 𝑐)) ⇓𝑒
Bool

eval(𝑀, 𝑓 (𝑣)) = ⊤
(𝑀,𝑛,C, 𝑓 (𝑣)) ⇓𝑒

And
(𝑀,𝑛,C, 𝑒) ⇓𝑒 (𝑀,𝑛,C, 𝑒 ′) ⇓𝑒

(𝑀,𝑛,C, 𝑒 and 𝑒 ′) ⇓𝑒
True

(𝑀,𝑛,C, True) ⇓𝑒

Then
(𝑀,𝑛,C, 𝑒1) ⇓𝑒 eval(𝑀, 𝑓 (𝑣)) = ⊤
(𝑀,𝑛,C, if 𝑓 (𝑣) then 𝑒1 else 𝑒2) ⇓𝑒

Or1
(𝑀,𝑛,C, 𝑒) ⇓𝑒

(𝑀,𝑛,C, 𝑒 or 𝑒 ′) ⇓𝑒

Else
(𝑀,𝑛,C, 𝑒2) ⇓𝑒 eval(𝑀, 𝑓 (𝑣)) = ⊥
(𝑀,𝑛,C, if 𝑓 (𝑣) then 𝑒1 else 𝑒2) ⇓𝑒

Or2
(𝑀,𝑛,C, 𝑒 ′) ⇓𝑒

(𝑀,𝑛,C, 𝑒 or 𝑒 ′) ⇓𝑒

All
(𝑀,𝑛,C, {𝑥 ↦→ 𝑣1}(𝑒)) ⇓𝑒 · · · (𝑀,𝑛,C, {𝑥 ↦→ 𝑣𝑙 }(𝑒)) ⇓𝑒 eval(𝑀,𝑔(𝑣)) = { 𝑣1 . . . 𝑣𝑙 }

(𝑀,𝑛,C, all (_𝑥. 𝑒) 𝑔(𝑣)) ⇓𝑒

Any
(𝑀,𝑛,C, {𝑥 ↦→ 𝑣𝑖 }(𝑒)) ⇓𝑒 𝑣𝑖 ∈ eval(𝑀,𝑔(𝑣))

(𝑀,𝑛,C, any (_𝑥. 𝑒) 𝑔(𝑣)) ⇓𝑒

Fig. 9. Semantics for Facet. If the node 𝑛.𝑐 does not exist, then the Call rule does not apply.

B TRANSLATING Facet PROGRAMS TO TWO-WAY TREE AUTOMATA

If for every structure𝑀 , the states Asp(𝑀) are computable and finite, then a Facet program can
be translated to a two-way alternating tree automaton over syntax trees. Facet draws attention to
a small subset of tree automata that serve as semantic evaluators, and which have state spaces and
alphabets that can be highly structured. Most Facet programs we have considered consist of at
most a few clauses, with each clause handling the semantics for a large set of related states.

Two-way alternating tree automata over states 𝑄 and alphabet Δ assign to each state and symbol
a positive Boolean formula like the following

𝛿 (𝑞, 𝑎) = (𝑞′′, 0) ∨ (𝑞′,−1) ∧ (𝑞, 1) ∧ (𝑞, 2).
This formula stipulates that in state 𝑞 reading symbol 𝑎, the automaton can either continue from
the current position (0) in state 𝑞′′ or else it should succeed in several new positions: from the
parent (−1) in state 𝑞′ and from the left (1) and right (2) children, both in state 𝑞. More generally,
the transitions are of the following form:

𝛿 (𝑞, 𝑎) ∈ ℬ+ (𝑄 × {−1, 0, ..., 𝑘}) where 𝑞 ∈ 𝑄, 𝑎 ∈ Δ, 𝑘 = arity(𝑎),
and they describe the viable next states and directions for the machine. It can either move up (−1),
down (numbers > 0), or stay at the same node (0) on the input tree while changing state. Satisfying
Boolean assignments to the set 𝑄 × {−1, 0, ..., 𝑘} describe strategies to build accepting automaton
runs along an input syntax tree, with the two components of 𝑄 and {−1, 0, ..., 𝑘} corresponding to
the next state and the direction to move, respectively. We next explain how programs in Facet have
a simple, straightforward translation to such automata.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 33

Given a well-formed program 𝑃 , a structure𝑀 , the set Asp(𝑀), and a distinguished state 𝜎𝑖 ∈
Asp(𝑀), we can build a two-way alternating tree automaton 𝒜(𝑃,𝑀) that accepts precisely the
syntax trees (rooted at𝑛) for which (𝑀,𝑛,C (𝑃), 𝜎𝑖) ⇓𝑝 holds. The states of𝒜(𝑃,𝑀) are the members
of Asp(𝑀) and the initial state is 𝜎𝑖 . For each clause 𝑐 ∈ C (𝑃) of the form

𝑃(𝑀, 𝜎 (𝑧), 𝑛) B match 𝑛.l with 𝛼1 → 𝑒1 . . . 𝛼𝑚 → 𝑒𝑚

the translation creates a set of transitions. For each matching 𝜎 ∈ Asp(𝑀) there is a transition for
each 𝑎 ∈ Δ. We write 𝜏 = match𝑐 (𝛼𝑖 , 𝑎) to mean that 𝑎 matches the alphabet pattern 𝛼𝑖 in 𝑐 with
unifying substitution 𝜏 and it does not match 𝛼 𝑗 for any 𝑗 < 𝑖 . We write 𝜏 (𝑒) for the application of
𝜏 to 𝑒 , which substitutes 𝜏 (𝑥) for all free occurrences of 𝑥 in 𝑒 , for all 𝑥 in the domain of 𝜏 .

Suppose 𝜏 = match(pat𝑐 , 𝜎) for some clause 𝑐 with cases 𝛼𝑖 → 𝑒𝑖 . For each symbol 𝑎 ∈ Δ, with
𝜏 ′ = match𝑐 (𝜏 (𝛼𝑖), 𝑎), we have the transition

𝛿 (𝜎, 𝑎) = aut(𝜏 ′(𝜏 (𝑒𝑖))),

with aut described below. Any 𝑎 ∈ Δ for which no alphabet pattern matches, and which is therefore
not covered above, is assigned 𝛿 (𝜎, 𝑎) = ⊥. Thus a match statement need not specify what to do
for alphabet symbols that, say, must never be read in specific states of the program.

Expressions 𝑒 are translated into positive Boolean formulae using the function aut defined below.

aut(True) = ⊤ aut(𝑒1 and 𝑒2) = aut(𝑒1) ∧ aut(𝑒2)
aut(False) = ⊥ aut(𝑒1 or 𝑒2) = aut(𝑒1) ∨ aut(𝑒2)
aut(𝑓 (𝑣)) = eval(𝑀, 𝑓 (𝑣))

aut(if 𝑓 (𝑣) then 𝑒1 else 𝑒2) =
aut(𝑒1) if eval(𝑀, 𝑓 (𝑣)) = ⊤
aut(𝑒2) else

aut(all (_𝑥. 𝑒) 𝑔(𝑣)) =
∧

𝑣′ ∈ eval (𝑀,𝑔 (𝑣)) aut({𝑥 ↦→ 𝑣 ′}(𝑒))
aut(any (_𝑥. 𝑒) 𝑔(𝑣)) =

∨
𝑣′ ∈ eval (𝑀,𝑔 (𝑣)) aut({𝑥 ↦→ 𝑣 ′}(𝑒))

aut(𝑃(𝑀, 𝜎 (𝑣), 𝑛.dir)) = (𝜎, dir) where 𝜎 = norm(𝑀,𝜎 (𝑣))

We can now state one other well-formedness condition for Facet programs. Namely, for every
𝑀 , 𝜎 ∈ Asp(𝑀), 𝑎 ∈ Δ, and clause 𝑐 such that 𝜏 = match(pat𝑐 , 𝜎), if 𝜏 ′ = match𝑐 (𝜏 (𝛼𝑖), 𝑎) for the
case 𝛼𝑖 → 𝑒𝑖 in 𝑐 , then we must have:

aut(𝜏 ′(𝜏 (𝑒𝑖))) ∈ ℬ+ (Asp × {−1, 0, . . . , arity(𝑎)}).

In other words, the movement of a program along the syntax tree must respect symbol arities.

B.1 Example Construction

Here we explicitly show the construction of an automaton for a restricted regular expression
language on the alphabet {𝑎, 𝑏}. Assume regular expressions as in Section 5 but without union,
intersection, and negation. Our evaluator simplifies as follows:

Reg(𝑤, (𝑙, 𝑟), 𝑛) B match 𝑛.l with

∗ → if (𝑙 = 𝑟) then True else

any (_𝑥. Reg(𝑤, (𝑙, 𝑥), 𝑛.c1) and Reg(𝑤, (𝑥, 𝑟), 𝑛.stay)) [𝑙 + 1, 𝑟]
· → any (_𝑥. Reg(𝑤, (𝑙, 𝑥), 𝑛.c1) and Reg(𝑤, (𝑥, 𝑟), 𝑛.c2)) [𝑙, 𝑟]
𝑥 → 𝑟 = 𝑙 + 1 and 𝑤 (𝑙) = 𝑥

Consider the word 𝑤 = abb. The resulting two-way alternating automaton 𝒜(Reg,𝑤) is con-
structed as follows. See [Comon et al. 2007] for definitions and results for such automata. The state

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

34 P. Krogmeier, P. Madhusudan

set is
𝑄 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4),

dual(1, 1), dual(1, 2), dual(1, 3), dual(1, 4), dual(2, 2), dual(2, 3),
dual(2, 4), dual(3, 3), dual(3, 4), dual(4, 4)}.

The initial state is (1, |abb| + 1) = (1, 4). Here are just some of the many transitions:
𝛿 ((1, 2), 𝑎) = ⊤
𝛿 ((2, 3), 𝑏) = ⊤
𝛿 ((3, 4), 𝑏) = ⊤
𝛿 ((1, 4), ·) = ((1, 1), 1) ∧ ((1, 4), 2) ∨ ((1, 2), 1) ∧ ((2, 4), 2) ∨ ((1, 3), 1) ∧ ((3, 4), 2)

∨((1, 4), 1) ∧ ((4, 4), 2)
𝛿 ((1, 3), ·) = · · ·
𝛿 ((1, 2), ·) = · · ·
𝛿 ((1, 1), ·) = ((1, 1), 1) ∧ ((1, 1), 2)
𝛿 ((2, 4), ·) = · · ·
𝛿 ((2, 3), ·) = · · ·
𝛿 ((2, 2), ·) = · · ·
𝛿 ((3, 4), ·) = · · ·
𝛿 ((3, 3), ·) = · · ·
𝛿 ((4, 4), ·) = · · ·
𝛿 ((1, 1), ∗) = ⊤
𝛿 ((2, 2), ∗) = ⊤
𝛿 ((3, 3), ∗) = ⊤
𝛿 ((4, 4), ∗) = ⊤
𝛿 ((1, 4), ∗) = ((1, 2), 1) ∧ ((2, 4), 0) ∨ ((1, 3), 1) ∧ ((3, 4, 0)) ∨ ((1, 4), 1) ∧ ((4, 4, 0))
𝛿 ((2, 4), ∗) = · · ·
𝛿 ((3, 4), ∗) = · · ·
𝛿 ((1, 3), ∗) = · · ·
𝛿 ((2, 3), ∗) = · · ·
𝛿 ((1, 2), ∗) = · · ·

All other transition formulas not already suggested above are ⊥.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 35

C COMPUTATION TREE LOGIC

Wewant a semantic evaluator for CTL syntax trees𝜑 over pointed Kripke structures𝐺 = (𝑊, 𝑠, 𝐸, 𝑃)
that checks whether 𝐺 |= 𝜑 . Like modal logic, the semantic aspects again include nodes of 𝐺 , but
now also a counter to interpret path quantifiers recursively.

We consider the following grammar for CTL formulas, from which the other standard operators
can be defined:

𝜑 F 𝑎 ∈ Σ | 𝜑 ∨𝜓 | ¬𝜑 | EG𝜑 | E(𝜑U𝜓) | EX𝜑
The semantics for path quantifiers is given recursively based on the following:

𝐺,𝑤 |= EX𝜑 ⇔ ∃𝑤 ′. 𝐸 (𝑤,𝑤 ′) and 𝐺,𝑤 ′ |= 𝜑

with the other two path quantifiers interpreted according to the equivalences
(1) EG𝜑 ≡ 𝜑 ∧ EX(EG𝜑) and (2) E(𝜑U𝜓) ≡ 𝜓 ∨ 𝜑 ∧ EX(E(𝜑U𝜓)),

with (1) understood as a greatest fixpoint and (2) as a least fixpoint, as we discuss shortly. The
CTL program is given in Figure 10. Below, and in the program, we write “𝐸𝑤” as a shorthand for
{𝑤 ′ ∈𝑊 : 𝐸 (𝑤,𝑤 ′)}. Fix a Kripke structure 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃).
The alphabet ADT is trivial. The state ADT consists of two parts:

Asp(𝐺) B {𝑤, dual(𝑤) : 𝑤 ∈𝑊 } ⊔ Count(𝐺)
Count(𝐺) B {(𝑤, 𝑖), (dual(𝑤), 𝑖) : 𝑤 ∈𝑊, 0 ≤ 𝑖 ≤ |𝑊 |},

the first being states of the form 𝑤 or dual(𝑤), which do not involve a counter, and the second
being states of the form (𝑤, 𝑖) or (dual(𝑤), 𝑖), which use a counter to verify path quantifiers.
The counter value 𝑖 tracks the stages of a least or greatest fixpoint computation. If the counter

is being used to verify a formula EG𝜑 holds at some 𝑤 ∈𝑊 , then this is a greatest fixpoint. On
the other hand, if the counter is being used to verify a formula E(𝜑U𝜓) does not hold at some
𝑤 ∈𝑊 , then it is a least fixpoint. To understand this, let us consider the equivalences (1) and (2)
as monotone functions over 𝒫 (𝑊). We write J𝜑K𝐺 B {𝑤 ∈𝑊 : 𝐺,𝑤 |= 𝜑} for the set of states
where a given formula holds. Now observe that (1) and (2) correspond to the monotone functions

EG𝜑 (𝑋) = J𝜑K ∩ {𝑤 ∈𝑊 : 𝐸𝑤 ∩ 𝑋 ≠ ∅}
EU𝜑,𝜓 (𝑋) = J𝜓K ∪ {𝑤 ∈𝑊 : 𝐸𝑤 ∩ 𝑋 ≠ ∅} ∩ J𝜑K,

with JEG𝜑K𝐺 = gfp(EG𝜑) and JE(𝜑U𝜓)K𝐺 = lfp(EU𝜑,𝜓). The program CTL in Figure 10 has the
property that for all 𝐺 = (𝑊, 𝑠, 𝐸, 𝑃),𝑤 ∈𝑊 , 0 ≤ 𝑖 ≤ |𝑊 |, and 𝜑 :

(𝐺, root (EG𝜑),C (CTL), (𝑤, 𝑖)) ⇓𝑝 ⇔ 𝑤 ∈ EG
|𝑊 |−𝑖
𝜑 (𝑊)

and (𝐺, root (E(𝜑U𝜓)),C (CTL), (dual(𝑤), 𝑖)) ⇓𝑝 ⇔ 𝑤 ∉ EU
|𝑊 |−𝑖
𝜑,𝜓

(∅).

The task of evaluating𝑤 ∉ JEG𝜑K𝐺 needs no counter because there is always a finite computation
witnessing non-membership for EG-formulas. The task of evaluating whether 𝑤 ∈ JE(𝜑U𝜓)K𝐺
needs no counter for the same reason. There are always proofs of removal from a greatest fixpoint
and proofs of inclusion in a least fixpoint. Note we do not mind infinite loops in the other cases
because we interpret programs as tree automata with reachability acceptance.

Theorem 8. CTL separation for finite sets P andN of finite pointed Kripke structures, and grammar
𝒢, is decidable in time 𝒪(2poly (𝑚𝑛2) · |𝒢 |), where𝑚 = |P | + |N | and 𝑛 = max𝐺 ∈P∪N |𝐺 |.
Proof. We have |Asp(𝐺) | = 𝒪(|𝑊 |2), and the rest follows by Theorem 1 and Corollary 1. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

36 P. Krogmeier, P. Madhusudan

CTL(𝐺, 𝑤, 𝑛) B

match 𝑛.l with

EG → CTL(𝐺, 𝑤, 0, 𝑛.stay)
EU → CTL(𝐺, 𝑤, 𝑛.c2) or

(CTL(𝐺, 𝑤, 𝑛.c1) and (any (_𝑧. CTL(𝐺, 𝑧, 𝑛.stay)) 𝐸𝑤))

EX → any (_𝑧. CTL(𝐺, 𝑧, 𝑛.c1)) 𝐸𝑤

∨ → CTL(𝐺, 𝑤, 𝑛.c1) or CTL(𝐺, 𝑤, 𝑛.c2)
¬ → CTL(𝐺, dual(𝑤), 𝑛.c1)
𝑥 → 𝑥 ∈ 𝑃 (𝑤)

CTL(𝐺, dual(𝑤), 𝑛) B

match 𝑛.l with

EU → CTL(𝐺, dual(𝑤), 0, 𝑛.stay)
EG → CTL(𝐺, dual(𝑤), 𝑛.c1) or (all (_𝑧. CTL(𝐺, dual(𝑧), 𝑛.stay)) 𝐸𝑤)

EX → all (_𝑧. CTL(𝐺, dual(𝑧), 𝑛.c1)) 𝐸𝑤

∨ → CTL(𝐺, dual(𝑤), 𝑛.c1) and CTL(𝐺, dual(𝑤), 𝑛.c2)
¬ → CTL(𝐺, 𝑤, 𝑛.c1)
𝑥 → 𝑥 ∉ 𝑃 (𝑤)

CTL(𝐺, 𝑤, 𝑖, 𝑛) B

match 𝑛.l with

EG → if 𝑖 = |𝑊 | then True

else CTL(𝐺, 𝑤, 𝑛.c1) and (any (_𝑧. CTL(𝐺, 𝑧, 𝑖 + 1, 𝑛.stay)) 𝐸𝑤)

CTL(𝐺, dual(𝑤), 𝑖, 𝑛) B

match 𝑛.l with

EU → if 𝑖 = |𝑊 | then true

else CTL(𝐺, dual(𝑤), 𝑛.c2) and

(CTL(𝐺, dual(𝑤), 𝑛.c1) or

(all (_𝑧. CTL(𝐺, dual(𝑧), 𝑖 + 1, 𝑛.stay)) 𝐸𝑤))

Fig. 10. CTL evaluates CTL formulas 𝜑 against an input pointed Kripke structure 𝐺 and checks 𝐺 |= 𝜑 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

Languages with Decidable Learning: A Meta-theorem 37

D FINITE-VARIABLE FIRST-ORDER LOGIC

Fix a finite relational signature with relation symbols 𝑅𝑖 and a set of variables 𝑉 = {𝑥1, . . . , 𝑥𝑘 }. We
write a program FO that evaluates an FO

𝑘 syntax tree 𝜑 against a relational structure𝑀 and checks
𝑀 |= 𝜑 . The aspects are the (partial) assignments to variables 𝑉 :

Asp(𝑀) B {𝛾, dual(𝛾) : 𝛾 ∈ [𝑉 ⇀ 𝑀]},

and |Asp(𝑀) | = 𝒪(|𝑀 |𝑘). The alphabet ADT consists of unary constructors for ∀ and ∃, as well as
𝑙-ary constructors for each 𝑙-ary relation symbol 𝑅. The program FO together with its (omitted)
dual allows us to derive the main result of [Krogmeier and Madhusudan 2022]. The other results
can also be derived, e.g., FO𝑘 with recursive definitions can be interpreted using a combination of
two-way navigation as in Section 7 and counters as in Appendix C.

FO(𝑀, 𝛾, 𝑛) B

match 𝑛.l with

∧ → FO(𝐺, 𝛾, 𝑛.c1) and FO(𝐺, 𝛾, 𝑛.c2)
∨ → FO(𝐺, 𝛾, 𝑛.c1) or FO(𝐺, 𝛾, 𝑛.c2)
¬ → FO(𝐺, dual(𝛾), 𝑛.c1)
∀𝑥 → all (_𝑧. FO(𝐺, 𝑧, 𝑛.c1)) {𝛾 [𝑥 ↦→ 𝑎] : 𝑎 ∈ 𝑀}
∃𝑥 → any (_𝑧. FO(𝐺, 𝑧, 𝑛.c1)) {𝛾 [𝑥 ↦→ 𝑎] : 𝑎 ∈ 𝑀}
𝑅(𝑥) → 𝛾 (𝑥) ∈ 𝑅𝑀

Fig. 11. FO evaluates first-order logic formulas 𝜑 against an input relational structure𝑀 and checks𝑀 |= 𝜑 .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article . Publication date: April 2023.

	Abstract
	1 Introduction
	2 Motivating Problem: Learning Modal Logic Formulas
	2.1 Separating Kripke Structures with Modal Logic Formulas
	2.2 Evaluating Modal Formulas on Fixed Kripke Structures
	2.3 A Program for Evaluating Modal Formulas

	3 Preliminaries
	3.1 Syntax Trees and Tree Grammars
	3.2 Tree Automata

	4 Meta-Theorem for Decidable Learning
	4.1 A Class of Languages with Decidable Learning
	4.2 Syntax and Semantics of Facet
	4.3 Meta-Theorem
	4.4 Decidable Learning for Modal Logic and Dual Clauses

	5 Learning Regular Expressions
	5.1 Separating Words with Regular Expressions
	5.2 Decidable Learning for Regular Expressions

	6 Linear Temporal Logic
	6.1 Separating Infinite Words with Linear Temporal Logic
	6.2 Decidable Learning for LTL

	7 Context-Free Grammars
	7.1 Separating Words with Context-Free Grammars
	7.2 Decidable Learning for Context-Free Grammars

	8 First-Order Logic over Rational Numbers with Order
	8.1 Learning Queries over Rational Numbers with Order
	8.2 Decidable Learning for First-Order Logic Queries over Rationals

	9 Decidable Learning for String Programs
	9.1 String Overview
	9.2 Decidable Learning for String

	10 Related Work
	11 Conclusion
	References
	A Detailed description of Facet
	A.1 Parameters
	A.2 Semantics
	A.3 Details

	B Translating Facet Programs to Two-way Tree Automata
	B.1 Example Construction

	C Computation Tree Logic
	D Finite-Variable First-Order Logic

