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We study the problem of synthesizing domain-specific languages (DSLs) for few-shot learning in symbolic
domains. Given a base language and instances of few-shot learning problems, where each instance is split into
training and testing datasets, the DSL synthesis problem asks for a grammar over the base language which
guarantees that small expressions solving training datasets also solve corresponding testing datasets, where the
notion of expression size varies as a parameter. Furthermore, the grammar must meet syntax constraints given
as input. We prove that the problem is decidable for a class of languages whose semantics can be evaluated by
tree automata and when expression size corresponds to parse tree depth in the grammar, and, furthermore, the
grammars solving the problem correspond to a regular set of trees. We also prove decidability for a relaxation
of DSL synthesis which asks for a grammar that meets syntax constraints and contains solutions to each
learning instance. The proofs yield decision procedures based on tree automaton emptiness algorithms.

1 INTRODUCTION
In this work, we are interested in few-shot learning of symbolic expressions— learning symbolic
classifiers in a logic that separate a given finite set of positive and negative examples or learning
symbolic programs that compute a function matching a given finite set of input-output examples.

For a large class of concepts C, it is typically impossible to identify a target concept 𝑐 ∈ C from
just a small set of samples 𝑆 and hence succeed at few-shot learning. In practice, few-shot learning,
such as program synthesis from examples, is successful because researchers identify a much smaller
class of conceptsH , called the hypothesis class, and learn concepts fromH . The hypothesis class
in symbolic learning is defined using a language (often referred to as a domain-specific language or
DSL) that captures the more common and typical concepts in the domain. For few-shot learning,
there is often also an ordering of concepts inH , and few-shot learning algorithms find and report,
appealing to Occam’s razor, the smallest concept inH according to this ordering that is consistent
with the samples 𝑆 .

The literature on program synthesis/learning from input-output examples is replete with clever
human design of DSLs. These DSLs are specially crafted by researchers for each application
domain, accompanied by either an efficient learning algorithm that works for that hypothesis class
or using generic program synthesis tools, e.g. [Gulwani 2011; Polozov and Gulwani 2015]. For
example, to automatically complete the columns of a spreadsheet to match some given example
strings, DSLs identify the most common string-manipulation functions that occur in spreadsheet
programming [Gulwani 2011]. The SyGuS format (syntax-guided synthesis) for program synthesis
makes this discipline of defining hypothesis classes explicit using grammars to define a DSL in
which programs/expressions are synthesized. Recent work in semantics-guided synthesis supports
specifying syntax for DSLs as well as semantics as part of the synthesis problem [Kim et al. 2021].

Formulation of DSL Synthesis. In this paper, we are interested in automatically synthesizing
DSLs for few-shot learning, replacing work currently done by researchers. The first contribution of
this paper is a definition of the problem of DSL synthesis for solving few-shot learning problems.
We ask:
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2 P. Krogmeier, P. Madhusudan

What formulation of DSL synthesis facilitates few-shot learning in a domain?
Given an application domain 𝐷 , we would like to formalize DSL synthesis for 𝐷 itself using

learning. Intuitively, we propose to learn DSLs from instances of few-shot learning problems.
Let us fix a base language using a grammar 𝐺 over a finite signature that provides function,

relation, and constant symbols, and where expressions in 𝐺 have a fixed semantics.
Consider a finite training set of few-shot learning instances I obtained from a domain. We would

like to learn a DSL H , which includes a syntax for expressions and a semantics for expressions
formalized using the base grammar𝐺 , that effectively solves each of the problems in I. Each 𝑝 ∈ I
is itself a learning problem: it includes a set of training examples 𝑋𝑝 and a set of testing examples
𝑌𝑝 . We require the synthesized DSLH to solve each of these problems 𝑝 ∈ 𝐼 in the following sense:
the smallest expressions inH (according to a fixed ordering on expressions) that are consistent
with the training examples 𝑋𝑝 must also be consistent with the testing examples 𝑌𝑝 .

We ask for the automated synthesis of DSLs using a small number of few-shot learning problems,
replacing the human who has been typically responsible for this design. The bias in the DSL is
informed by the typical few-shot learning problems in the domain that are presented. In addition to
the few-shot learning instances, the input is also allowed to include a constraint G, which serves as
a meta-grammar that can constrain the DSL and provide additional syntactic bias on the semantics
and syntax it uses. The DSLH must satisfy three properties in order to solve the problem:
• First, for each instance, H must be expressive enough to capture a concept 𝑐 that solves the
instance, in the sense that 𝑐 is consistent with both the training and testing sets.
• Second, for each instance 𝑝 ∈ 𝐼 , consider the smallest concepts 𝑐 that are expressible inH , and
minimal according to some ordering <, which satisfy all the training samples in 𝑋𝑝 . Then 𝑐

must also satisfy the testing samples in 𝑌𝑝 .
• Third, the definition of the hypothesis class H in terms of the base language must meet the
syntactic constraints given by G.
Intuitively, these conditions demand that for any concept expressible in the base language𝐺 that

solves the training set 𝑋𝑝 but does not solve the testing set 𝑌𝑝 (for some 𝑝 ∈ 𝑃 ), the DSLH must
either disallow expressing this concept or make sure that there are smaller concepts expressible in
H that solve the training set 𝑋𝑝 and testing set 𝑌𝑝 .

The first two conditions above need to be met for each few-shot learning instance in I forH to
be a valid solution. The automated design ofH hence needs to bias concepts that it expresses so
that it captures the more “natural” concepts for the domain using simpler expressions.

Decidability of DSL Synthesis. The DSL synthesis problem for few-shot learning is a meta-
synthesis problem (synthesizing a DSL that in turn solves a set of few-shot synthesis problems) and
is algorithmically complex. A natural question that arises is whether there are natural and powerful
subclasses where the problem is decidable. More precisely, for a given signature for defining the
hypothesis classH , we would like algorithms that, given a set of few-shot learning instances I and
syntax constraint G, either synthesize anH that solves the instances and satisfies G or report that
no solution exists. We allow the semantics of the DSLs, defined in terms of an existing language
with grammar 𝐺 , to be of arbitrary length, which makes decidability nontrivial.

We prove that the DSL synthesis problem is indeed decidable for a class of languages where the
semantics of expressions can be evaluated bottom-up using finite memory. The technique that we
use to establish decidability relies on tree automata— we show that the class of trees encoding DSLs
which solve the few-shot learning instances is in fact a regular set of trees. Our result builds upon
recent techniques to learn expressions in languages that can be evaluated bottom-up using memory
which can depend arbitrarily on the sizes of examples, but which is independent of expression
size [Krogmeier and Madhusudan 2022, 2023]. Our constructions are much more complex (both
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conceptually and in terms of time complexity) than these previous constructions, as the synthesis
of suitable DSLs involves finding minimal expressions that witness the solvability of each given
few-shot learning instance. In particular, we need to use alternating quantification on trees to
capture the fact that there exists a solution to each instance such that all other smaller expressions
do not solve the training set. As far as we know, this is the first decidability result on DSL synthesis.

Decidability of Grammar Synthesis.We also study a relaxation of the DSL synthesis problem,
which we call grammar synthesis. Given a set of few-shot learning instances I, the grammar
synthesis problem asks for a DSLH which contains a concept consistent with each 𝑝 ∈ I, with no
requirement on the ordering of consistent expressions. We prove grammar synthesis is decidable
for the same class of base languages as for DSL synthesis. The proof is similar in that it involves
constructing tree automata which capture the set of trees encoding DSLs which solve each input
learning instance, and thus the set of solutions corresponds to a regular set of trees. It is also a
considerably simpler construction, as the specification is simpler— it no longer involves alternating
quantification on trees, and the decision procedure we obtain has lower complexity as a result.

Contributions. In summary, this paper makes the following contributions:
• A novel definition of DSL synthesis which asks for a hypothesis class that biases toward few-shot
learning in a domain, using few-shot learning instances as input.
• A decidability result for DSL synthesis over a powerful subclass of base languages.
• A natural relaxation of the DSL synthesis problem, called grammar synthesis, and a correspond-
ing decidability result over the same subclass.
The paper is organized as follows. In Section 2, we explore the DSL synthesis problem with some

simple illustrative examples. In Section 3, we review background and introduce some concepts
related to the problem formulation. In Section 4, we present our formulation of DSL synthesis. In
Section 5, we prove decidability of DSL synthesis for a class of base languages whose semantics can
be computed by tree automata and when expression order is given by parse tree depth. In Section 6,
we introduce a natural relaxation of DSL synthesis, which we call grammar synthesis, and prove
its decidability. Section 7 reviews related work and Section 8 concludes.

2 EXAMPLES
In this section we introduce the DSL synthesis problem with some examples.

2.1 Linear Classifiers
Suppose we have some datasets of points in the plane

𝐷1 = {(𝑥11, 𝑦11), (𝑥12, 𝑦12), . . . , (𝑥1𝑛1 , 𝑦
1
𝑛)} ⊆ R2, . . . , 𝐷𝑘 = {(𝑥𝑘1 , 𝑦𝑘1 ), (𝑥𝑘2 , 𝑦𝑘2 ), . . . , (𝑥𝑘𝑛𝑘 , 𝑦

𝑘
𝑛𝑘
)} ⊆ R2

and we want to fit a function to each set of points. Suppose for each dataset 𝐷𝑖 , for some numbers
𝑎𝑖 , 𝑏𝑖 ∈ R, the dataset 𝐷𝑖 obeys

𝑦 𝑗 = 𝑎𝑖𝑥 𝑗 + 𝑏𝑖 , for all 1 ≤ 𝑗 ≤ 𝑛𝑖 .

If we do not know that a linear expression will do, we might search in a space of numerical
expressions built out of both linear and nonlinear operations. For example, suppose we choose to
search in the space of expressions defined by the following grammar.

𝑆 F 𝑁𝑥 + 𝑆 | 𝑁 | 𝑁𝑥2 | 𝑁𝑥3 | · · · | 𝑁𝑥𝑐

𝑁 F 𝑛 ∈ R
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Of course, we can find expressions in this grammar to fit each dataset 𝐷𝑖 , and for large values of 𝑐
we can fit many datasets beyond that. But, since two points in the plane determine a line, we might
imagine a better search space for this specific domain would collapse to a single viable concept
after we see just two examples.
In this paper, we introduce a DSL synthesis problem to explore how hypothesis classes can

be synthesized to solve few-shot learning problems. In this example, DSL synthesis asks for a
hypothesis class of arithmetic expressions which can be used for few-shot learning by enumerating
small expressions.

Specifically, we would like a DSL such that, given a set of few-shot learning instances {𝐷𝑖 }, if we
enumerate expressions in order of increasing complexity, the first consistent expression we find for
each 𝐷𝑖 should generalize well. Let us imagine splitting the datasets 𝐷𝑖 into two sets of examples, a
training set 𝑋 𝑖 and a testing set 𝑌 𝑖 . Let us say an expression that is consistent with 𝑋 𝑖 generalizes
on the problem 𝐷𝑖 if it is also consistent with 𝑌 𝑖 .
The DSL defined by the grammar above is not well tuned in this sense for linear datasets. For

example, suppose the first two datasets are𝐷1 = {(0, 0), (2, 4), (4, 8)} and𝐷2 = {(0, 0), (2, 8), (3, 12)},
split into

𝑋 1 = {(0, 0), (2, 4)}, 𝑌 1 = {(4, 8)}
and 𝑋 2 = {(0, 0), (2, 8)}, 𝑌 2 = {(3, 12)}.

The least complex expression consistent with 𝑋 1, if we measure complexity by number of nonter-
minals in a smallest parse tree, is in fact the expression 𝑥2, which has a parse tree of size 2 in the
grammar. This expression does not generalize to𝑌 1 because 42 = 16 ≠ 8. And the simplest expression
consistent with 𝑋 2 is the expression 𝑥3, also of size 2, which fails to generalize on 𝑌 2 because
33 = 27 ≠ 12. Perhaps the other training datasets 𝑋 𝑖 can be fit by other small nonlinear functions.
To address this, we could synthesize a grammar for arithmetic expressions which perhaps does not
allow the nonlinear operations at all, or perhaps it allows them, but enables linear expressions to
be expressed more succinctly. For example, the DSL specified by the grammar below solves the
problem by making the nonlinear operations more complex in the grammar.

𝑆 F 𝑁𝑥 + 𝑁 | 𝑆 × 𝑆 𝑁 F 𝑛 ∈ R

In this DSL, the least complex solutions for the training sets 𝑋 1 and 𝑋 2 are 2𝑥 and 4𝑥 , with size 3,
each of which is also consistent with its test set.

2.2 LTL from FOL
Suppose our base language is first-order logic (FOL), and we are trying to solve classification
problems over labeled finite words over an alphabet Σ. Our base grammar, shown below, might
allow us a handful of variables 𝑉 , along with an ordering on positions in words, equality on
positions, and monadic predicates 𝑃 (𝑥), one for each 𝑝 ∈ Σ.

𝜑 F 𝑃 (𝑥) | 𝑥 < 𝑥 ′ | 𝜑 ∧ 𝜑 ′ | 𝜑 ∨ 𝜑 ′ | ¬𝜑 | ∃𝑥 . 𝜑 | ∀𝑥 . 𝜑

Consider few-shot learning problems where the relevant properties are naturally expressed in
linear temporal logic (LTL) over an alphabet of propositions Σ = {a, b, c}. For example, suppose we
have the following few-shot learning instance split into a training set 𝑋 and a testing set 𝑌 :

𝑋 = {(+, ab), (+, aab)}
𝑌 = {(+, aaab), (−, aaa), (−, ccb), (−, cab)}
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In this setting, we might say a sentence 𝜑 from the base grammar is consistent with an example
(label,𝑤) if

𝑤 |= 𝜑 if label = +
𝑤 ̸ |= 𝜑 if label = −

Within this base language, there are many simple concepts consistent with the training set 𝑋 , e.g.,

∃𝑥 . 𝐴(𝑥), ∃𝑥 . 𝐵(𝑥), or ∃𝑥 . ∃𝑦.𝐴(𝑥) ∧ 𝐵(𝑦),
which are not consistent with the testing set 𝑌 .

A better hypothesis class for few-shot learning in this setting might be one which defines the
until operator𝜓 ′𝑈 𝜓 from LTL:

𝜑 F ∃𝑦.𝜓 ∧
(
∀𝑥 .¬(𝑥 < 𝑦) ∨𝜓 ′

)
𝜓,𝜓 ′ F 𝑃 (𝑥) | 𝑥 < 𝑦 | ¬𝜓 | 𝜓 ∧𝜓 ′ | 𝜓 ∨𝜓 ′ ,

where𝜓,𝜓 ′ above range over Boolean combinations of atomic formulas over all propositions and
variables. With respect to a DSL defined by the grammar above, the sentence

∃𝑦. 𝐵(𝑦) ∧
(
∀𝑥 .¬(𝑥 < 𝑦) ∨𝐴(𝑥)

)
,

which expresses “a is true until b”, is less complex than in the base language (has a smaller parse
tree), and it is also consistent with 𝑌 .

2.3 Stutter-Invariant Temporal Properties
Stutter invariance [Lamport 1983] is a concept from temporal logic that describes properties of a
system which depend only on its observable state variables and not on the number of time steps
that it stays in a given state. For example, the property that all requests are eventually responded to,
expressed in LTL as

𝜑 B G (Req→ F (Resp)),
is stutter invariant because any trajectory that satisfies 𝜑 will still satisfy 𝜑 if we stutter it any
number of times, where stutter means to repeat some of the existing letters, e.g., abbc is obtained
from abc by stuttering the second position one time. Any trajectory in (𝑢 · Req · 𝑣 · Resp)𝜔 , with
𝑢, 𝑣 ∈ Σ∗, satisfies 𝜑 , and so too do any of the stuttered versions. Similarly, if a trajectory does not
satisfy 𝜑 then stuttering does not change that.

If stutter invariance is important in a domain, wemight use testing datasets obtained by stuttering
the examples in training datasets to bias toward a hypothesis class that cannot detect stuttering.
For example, from a base grammar for LTL formulas

𝜑 F 𝑝 ∈ 𝑃 | X𝜑 | F𝜑 | G𝜑 | 𝜑U𝜑 ′ | 𝜑 ∧ 𝜑 ′ | 𝜑 ∨ 𝜑 ′ | ¬𝜑
we might prefer a DSL that omits the next time operator

𝜑 F 𝑝 ∈ 𝑃 | F𝜑 | G𝜑 | 𝜑U𝜑 ′ | 𝜑 ∧ 𝜑 ′ | 𝜑 ∨ 𝜑 ′ | ¬𝜑
as this language is equally expressive as the former for stutter-invariant properties [Peled and
Wilke 1997].

3 PRELIMINARIES
In this section, we review standard concepts like ranked alphabets, tree grammars, and tree automata.
Next we describe meta-grammars, including our encoding of grammars as trees, base languages,
consistency, examples, and expression size and depth with respect to a grammar.
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3.1 Alphabets and Grammars
Definition 3.1 (Ranked alphabet). A ranked alphabet Δ is a set of symbols with arities given by a

function arity : Δ→ N. We write Δ𝑖 for the subset of Δ that has arity 𝑖 . We use 𝑇Δ to denote the
smallest set of terms containing the nullary symbols in Δ and closed under forming new terms
using symbols of larger arity. For a set of nullary symbols 𝑋 disjoint from Δ0 we write 𝑇Δ (𝑋 ) to
mean 𝑇Δ∪𝑋 . We omit Δ from 𝑇Δ and 𝑇Δ (𝑋 ) when it is clear in context.

Definition 3.2 (Tree grammar). A tree grammar is a tuple 𝐺 = (𝑆, 𝑁 ,Δ, 𝑃), where 𝑁 is a finite set
of nonterminal symbols, 𝑆 ∈ 𝑁 is the starting nonterminal symbol, Δ is a ranked alphabet, and
𝑃 ⊆ 𝑁 ×𝑇 (𝑁 ) is a finite set of rules. Rules (𝑁, 𝑡) can be written also as 𝑁 ← 𝑡 .

Example 3.3. We use vertical bars in the standard way to depict a tree grammar by listing its
productions. Here is one for positive propositional logic formulas in conjuctive normal form over
variables 𝑥𝑖 .

𝑆 ← ∧(𝐷, 𝑆) | 𝐷 | true
𝐷 ← ∨(𝑋, 𝐷) | 𝑋 | false
𝑋 ← 𝑥1 | · · · | 𝑥𝑘

The language 𝐿(𝐺) ⊆ 𝑇Δ of a tree grammar 𝐺 is defined in the standard way as a least fixpoint.
We often write 𝑡 ∈ 𝐺 instead of 𝑡 ∈ 𝐿(𝐺) to refer to a term in the language of 𝐺 . In the remainder
of the paper, when we say grammar we mean a tree grammar. We also use the words tree and term
interchangeably.

3.2 Tree Automata
We make use of tree automata in Sections 5 and 6. For background on tree automata we refer the
reader to [Comon et al. 2007], but we highlight some salient aspects here.

We make use of two-way alternating tree automata. Intuitively, such automata process an input
tree by traversing it both up and down while branching universally in addition to existentially. The
transitions are given by Boolean formulae which describe the valid actions the automaton can take
to build an accepting run. For a symbol ℎ and state set 𝑄 , with 𝑞 ∈ 𝑄 , the transition 𝛿 (𝑞, ℎ) is a
positive Boolean formula 𝜑 over atoms𝑄 × {−1, 0, . . . , arity(ℎ)}. The automaton makes a transition
by picking a satisfying assignment for the atoms and continuing from the nearby nodes and states
designated by true atoms. For example, the formula

(𝑞1,−1) ∧ (𝑞2,−1) ∨ (𝑞2, 0) ∧ (𝑞3, 1)

requires that the automaton either continues at the parent node (designated by −1) from both 𝑞1
and 𝑞2 or continues at the current node (designated by 0) in 𝑞2 and the first child in 𝑞3. We adopt
more intuitive notation at times for the directions in the tree, e.g., we use up, stay, left, and right
for −1, 0, 1, and 2.
We will assume for convenience that both non-deterministic top-down tree automata and two-

way alternating tree automata have the form𝐴 = (𝑄,Δ, 𝐼 , 𝛿), with states𝑄 , alphabet Δ, initial states
𝐼 ⊆ 𝑄 , and 𝛿 a transition formula as described above. In the case of non-deterministic automata, the
transition formulas are restricted to disallow any stationary moves, moves to the parent, or universal
branching, i.e., multiple states required at a single node. Under these restrictions, there is a close
connection between tree automata and tree grammars, as a grammar rule 𝑁 ← 𝑓 (𝑁1, . . . , 𝑁𝑘 ) ∈ 𝑃
corresponds to a transition 𝛿 (𝑁, 𝑓 ) = (𝑁1, 1) ∧ · · · ∧ (𝑁𝑘 , 𝑘), and given any tree grammar 𝐺
we can compute in polynomial time a non-deterministic top-down tree automaton 𝐴(𝐺) with
𝐿(𝐴(𝐺)) = 𝐿(𝐺).
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All automata we use in this work have acceptance defined in terms of the existence of a run
on an input tree. We refer the reader to [Comon et al. 2007, Section 7] for background on this
presentation of tree automata and for the notion of a run.

3.3 Encoding Grammars as Trees
We will be defining tree automata whose inputs are trees that encode tree grammars. There are
many natural ways to encode a tree grammar itself as a tree; here we describe one such way which
we assume in our proofs.

To encode a grammar 𝐺 = (𝑆, 𝑁 ,Δ, 𝑃) as a tree 𝑡 we arrange its productions (𝑁𝑖 , 𝛼) along
the topmost right-going spine of 𝑡 , with each 𝛼 hanging to the left, as shown in Figure 1 for
Δ = {𝑎0, ℎ1, 𝑔2}, 𝑁 = {𝑁1, 𝑁2}, and 𝑆 = 𝑁1. We use the symbol “root” to indicate the root of the
tree and “end” to indicate there are no more productions at the right edge of the tree. We use
symbols “lhs𝑁𝑖

” and “rhs𝑁𝑖
” to distinguish between occurrences of nonterminals in the left-hand

and right-hand sides of a production. We write Γ(Δ, 𝑁 ) to denote grammar alphabets which encode
tree grammars over alphabet Δ and nonterminals 𝑁 .

Definition 3.4 (Grammar alphabet). Given a ranked alphabet Δ and a set of nonterminal symbols
𝑁 , we write Γ(Δ, 𝑁 ) for the alphabet Δ ⊔ {root1, end0} ⊔ {lhs2𝑁𝑖

, rhs0𝑁𝑖
: 𝑁𝑖 ∈ 𝑁 }.

Formally, we define a mapping from grammars to tree encodings, which we call grammar trees,
and a mapping from grammar trees to grammars.

The grammar tree for a grammar𝐺 = (𝑆, 𝑁 ,Δ, 𝑃), where we assume the productions are ordered
in a list as 𝑃 = ⟨𝑃1, 𝑃2, . . . , 𝑃𝑠⟩, is given by enc(𝐺) = root(enc𝑝 (𝑃)), where the spine of productions
is computed recursively on the list 𝑃 as follows.

enc𝑝 (⟨(𝑁𝑖 , 𝛼), 𝐿⟩) = lhs𝑁𝑖
(enc𝑡 (𝛼), enc𝑝 (𝐿)))

enc𝑝 (⟨⟩) = end
enc𝑡 (𝑓 (𝑡1, . . . , 𝑡𝑟 )) = 𝑓 (enc𝑡 (𝑡1), . . . , enc𝑡 (𝑡𝑟 ))

where 𝑓 ∈ Δ, arity(𝑓 ) = 𝑟

enc𝑡 (𝑁𝑖 ) = rhs𝑁𝑖

The grammar 𝐺 corresponding to a grammar tree 𝑡 of the form root(lhs𝑁𝑖
(𝑥,𝑦)) over alphabet

Γ(Δ, 𝑁 ), is given by
dec(𝑡) = (𝑁𝑖 , 𝑁 ,Δ, ⟨(𝑁𝑖 , dec𝑡 (𝑥)), dec𝑝 (𝑦)⟩),

where dec𝑡 and dec𝑝 are computed recursively as follows.
dec𝑝 (lhs𝑁𝑖

(𝑥,𝑦)) = ⟨(𝑁𝑖 , dec𝑡 (𝑥)), dec𝑝 (𝑦)⟩
dec𝑝 (end) = ⟨⟩
dec𝑡 (𝑓 (𝑥1, . . . , 𝑥𝑟 )) = 𝑓 (dec𝑡 (𝑥1), . . . , dec𝑡 (𝑥𝑟 ))

where 𝑓 ∈ Δ, arity(𝑓 ) = 𝑟

dec𝑡 (rhs𝑁𝑖
) = 𝑁𝑖

We sometimes elide the distinction between a grammar and its encoding as a grammar tree.

3.4 Meta-Grammars and Extensions
The DSL synthesis problem is parameterized by a base language with grammar 𝐺 ′ and the goal is
to synthesize a new grammar 𝐺 that can use nonterminals of 𝐺 ′ while also defining productions
for new nonterminals that do not appear in 𝐺 ′.
We will use regular constraints on grammar trees 𝐺 to specify inductive bias in the DSL syn-

thesis problem. The constraints are presented as meta-grammars G, i.e., grammars that constrain
grammar trees. For the synthesis of a grammar 𝐺 that uses nonterminals 𝑁 defined over a base
language with grammar 𝐺 ′ = (𝑆 ′, 𝑁 ′,Δ, 𝑃 ′), with 𝑁 ′ ⊆ 𝑁 , the meta-grammar is over the alphabet
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8 P. Krogmeier, P. Madhusudan

Grammar G over Γ(Δ, 𝑁 ):

𝑆 ← root(Prod)
Prod ← lhs𝑁𝑖

(Term, Prod) 𝑁𝑖 ∈ 𝑁
| end

Term ← 𝑔(Term, Term)
| ℎ(Term)
| 𝑎

| rhs𝑁𝑖
𝑁𝑖 ∈ 𝑁

Grammar 𝐺 over Δ: 𝑁1 ← ℎ(𝑁2)
𝑁2 ← ℎ(𝑁1) | 𝑔(𝑎, 𝑎)

Encoding enc(𝐺) ∈ 𝐿(G)root

lhs𝑁1 lhs𝑁2 lhs𝑁2
endℎ

rhs𝑁2

𝑔

𝑎 𝑎

ℎ

rhs𝑁1

Fig. 1. Encoding tree grammars as trees. (Top right) A tree grammar𝐺 over Δ = {𝑎0, ℎ1, 𝑔2} and nonterminals
𝑁 = {𝑁1, 𝑁2} and (bottom right) its encoding as a tree enc(𝐺) over the alphabet Γ(Δ, 𝑁 ). (Left) A tree
grammar G over alphabet Γ(Δ, 𝑁 ) with enc(𝐺) ∈ 𝐿(G).

Γ(Δ, 𝑁 ). The problem then asks for the synthesis of a grammar 𝐺 ∈ 𝐿(G) such that the extension
of 𝐺 with 𝐺 ′ is a solution to the problem, with extension defined as follows.

Definition 3.5 (Grammar extension). Given a grammar 𝐺 = (𝑆, 𝑁 ,Δ, 𝑃) and a grammar 𝐺 ′ =
(𝑆 ′, 𝑁 ′,Δ, 𝑃 ′) we define the extension of 𝐺 with 𝐺 ′ by ext(𝐺,𝐺 ′) B (𝑆, 𝑁 ∪ 𝑁 ′,Δ, 𝑃 ∪ 𝑃 ′).

3.5 Base Language, Examples, and Consistency
3.5.1 Base Language. We consider synthesizing DSLs defined over a base language. To specify
the base language we specify a grammar 𝐺 ′ = (𝑆 ′, 𝑁 ′,Δ, 𝑃 ′), a setM from which examples are
drawn, and a predicate called consistent ⊆ 𝐿(𝐺 ′) ×M, which captures whether an expression 𝑒

is consistent with an example 𝑀 ∈ M, written consistent(𝑒,𝑀). This predicate abstracts away
details of specific base languages while keeping the information relevant for proofs of our main
results in Sections 5 and 6.

Example 3.6 (Propositional Logic). If our base language consists of a grammar for propositional
logic formulas 𝜑 over variables 𝑋 , our examples could be variable assignments 𝛼 : 𝑋 → {0, 1}
labeled positive or negative. If we denote positive and negative examples by 𝑝 (𝛼) and 𝑛(𝛼), respec-
tively, then consistency might be defined as

consistent(𝜑, 𝑝 (𝛼)) ⇔ 𝛼 |= 𝜑 and
consistent(𝜑, 𝑛(𝛼)) ⇔ 𝛼 ̸ |= 𝜑.

Example 3.7 (Regular Expressions). For a base language of regular expressions 𝑟 over Σ = {𝑎, 𝑏, 𝑐},
our examples can be labeled words 𝑝 (𝑤), 𝑛(𝑤) with𝑤 ∈ Σ∗. Here, consistency can be defined as

consistent(𝑟, 𝑝 (𝑤)) ⇔ 𝑤 ∈ 𝐿(𝑟 ) and
consistent(𝑟, 𝑛(𝑤)) ⇔ 𝑤 ∉ 𝐿(𝑟 ).
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Example 3.8 (Linear Integer Arithmetic). For a base language of linear arithmetic expressions
in two variables 𝑥,𝑦 interpreted over the integers, the examples might be input-output pairs, i.e.,
((𝑎, 𝑏), 𝑜), for 𝑎, 𝑏, 𝑜 ∈ Z. Here, consistency can be defined as

consistent(𝑒, ((𝑎, 𝑏), 𝑜)) ⇔ LIA, {𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑏} |= 𝑒 = 𝑜,

where LIA stands for the theory of linear integer arithmetic.

3.5.2 Language Semantics Computable by Tree Automata. For a large class of base languages,
called finite-aspect checkable (FAC) languages in [Krogmeier and Madhusudan 2023], for each
example 𝑀 ∈ M, the predicate consistent, when specialized to 𝑀 , can be computed by tree
automata whose size is only a function of |𝑀 |. For such a language, for every 𝑀 ∈ M there
exist tree automata 𝐴𝑀 and 𝐴¬𝑀 with 𝐿(𝐴𝑀 ) = {𝑡 ∈ 𝐿(𝐺 ′) : consistent(𝑡, 𝑀)} and 𝐿(𝐴¬𝑀 ) =
{𝑡 ∈ 𝐿(𝐺 ′) : ¬consistent(𝑡, 𝑀)}. We use these example automata in our proofs in Sections 5 and 6.

3.6 Expression Size and Depth
Our formulation of the DSL synthesis problem depends on a grammar-dependent ordering over
expressions which captures the preference given to individual expressions by a grammar. We
describe here two natural orderings based on size and depth.

Definition 3.9 (Expression Size in a Grammar). Given a grammar 𝐺 and an expression 𝑒 ∈ 𝐺 , we
define the size of 𝑒 to be the minimum length of any derivation of 𝑒 using the rules of𝐺 . We denote
this by size(𝑒,𝐺).

Example 3.10. The expression f100 (𝑎) has size 101 with respect to this grammar:

𝑆 ← f (𝑆) | 𝑎

but it has size 3 with respect to this grammar:

𝑆 ← f50 (𝑆) | 𝑎,

since we can derive f100 (𝑎) with 𝑆 ⇒ f50 (𝑆) ⇒ f50 (f50 (𝑆)) ⇒ f50 (f50 (𝑎)) = f100 (𝑎).

Definition 3.11 (Expression Depth in a Grammar). Given a grammar𝐺 and an expression 𝑒 ∈ 𝐺 ,
we define the depth of 𝑒 to be the minimum over all parse trees 𝑇 for 𝑒 of the maximum number of
nonterminals encountered along any root-to-leaf path in 𝑇 . We denote this by depth(𝑒,𝐺).

Example 3.12. The expression 𝑥 + 𝑥 + 𝑥 + 𝑥 has depth 3 with respect to this grammar

𝑆 ← 𝑆 + 𝑆 | 𝑥,

and it has depth 4 with respect to this grammar

𝑆 ← 𝑥 + 𝑆 | 𝑥 .

Note also that 𝑥 has depth 1.

4 THE DSL SYNTHESIS PROBLEM
In this work we study the problem of synthesizing DSLs given instances of few-shot learning problems
as inputs.

Definition 4.1 (Learning Instance). A learning instance is a pair (𝑋,𝑌 ) consisting of a set 𝑋 of
training examples and a set 𝑌 of testing examples.
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The DSL synthesis problem is parameterized by a base language in terms of which the DSL can
be defined. As described in Section 3.5.1, the base language consists of an expression grammar𝐺 ′, a
domain of examplesM, and a domain-specific predicate consistent(𝑒,𝑀) which captures whether
an expression 𝑒 satisfies or does not satisfy an example𝑀 .

We say an expression 𝑒 ∈ 𝐺 ′ solves a set of examples 𝑋 ⊆ M if it is consistent with each example
in 𝑋 , and we use the notation

solves(𝑒, 𝑋 ) B ∧
𝑀 ∈𝑋 consistent(𝑒,𝑀).

Similarly, we say an expression 𝑒 solves or generalizes on an instance 𝐼 = (𝑋,𝑌 ) if it solves 𝑋 ∪ 𝑌 ,
written solves(𝑒, 𝐼 ). If an expression 𝑒 solves 𝑋 but does not solve 𝐼 = (𝑋,𝑌 ) we say that 𝑒 does not
generalize to 𝑌 .

Example 4.2. The regular expression 𝑎𝑏𝑐 fails to generalize for 𝐼 = ({𝑝 (𝑎𝑏𝑐), 𝑛(𝑎𝑏𝑏)}, {𝑝 (𝑎𝑏𝑏𝑐)})
because it matches all positive words and no negative words in the training set, but it does not
match the positive word in the testing set. In contrast, we do not say the expression 𝑎𝑏 (𝑏 + 𝑐) fails
to generalize because it does not even solve the training set.

4.1 Problem Definition
Here we define the DSL synthesis problem.

Problem (DSL synthesis).
Parameters:
• Finite set of nonterminals 𝑁
• Base language with 𝐺 ′ = (𝑆 ′, 𝑁 ′,Δ, 𝑃 ′) and 𝑁 ′ ⊆ 𝑁

• Predicate order(𝑒, 𝑒 ′,𝐺)1

Input:
• Learning instances 𝐼1, . . . , 𝐼𝑙
• Meta-grammar G over Γ(Δ, 𝑁 )

Output: A grammar 𝐺 = (𝑆, 𝑁 ,Δ, 𝑃) such that:
(1) for each instance 𝐼 , there is an expression 𝑒 ∈ ext(𝐺,𝐺 ′) such that solves(𝑒, 𝐼 ) holds,

and for all 𝑒 ′ ∈ ext(𝐺,𝐺 ′) which fail to generalize on 𝐼 , order(𝑒, 𝑒 ′, ext(𝐺,𝐺 ′)) holds
(2) it satisfies constraints imposed by G, i.e., enc(𝐺) ∈ 𝐿(G)

We write solves(𝐺, 𝐼 ) if Item 1 holds above for instance 𝐼 and grammar 𝐺 .
Solutions to DSL synthesis are grammars that make desirable generalizing expressions appear

early in the order and non-generalizing expressions appear later in the order. In some natural cases
the order predicate is defined using an underlying strict total order, like parse tree depth or size, as
described in Section 3.6. In these cases, a grammar that solves DSL synthesis can be used to solve
learning instances by enumerating expressions in increasing order and selecting the first one that
solves the training set. Let us see an example for propositional logic.

Example 4.3 (Propositional Logic). Consider the following DSL synthesis problem over a base
language of propositional logic with grammar 𝐺 ′ given by

𝑆 ← ∧(𝑆, 𝑆) | ∨ (𝑆, 𝑆) | ¬(𝑆) | 𝑥1 | · · · | 𝑥𝑘 | true | false,

1The order predicate can be interpreted to mean 𝑒 is preferred over 𝑒′ by grammar𝐺 .
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and with nonterminals 𝑁 = {𝑆, 𝑁1, 𝑁2} and 𝑁 ′ = {𝑆}, and with no meta-grammar constraint. It
consists of a single instance

𝑋 = {𝑝 ({𝑥2}), 𝑛({𝑥1, 𝑥2})}, 𝑌 = {𝑛(∅)},
where variable assignments are represented as sets of variables assigned true. In this example, the
predicate order(𝑒, 𝑒 ′,𝐺) is defined as size(𝑒,𝐺) < size(𝑒 ′,𝐺). Observe that we could synthesize
𝐺 = 𝐺 ′ by picking 𝑆 as the starting nonterminal and not adding any new productions for it. This is
not a solution. Indeed, the smallest expression from 𝐺 ′ that solves 𝑋 is ¬𝑥1, with size(¬𝑥1,𝐺 ′) = 2,
and it does not solve 𝑌 . A solution for 𝑋 ∪ 𝑌 like ¬𝑥1 ∧ 𝑥2 is too large, with size(¬𝑥1 ∧ 𝑥2,𝐺 ′) = 4.
But we can prefer ¬𝑥1∧𝑥2 over ¬𝑥1 by synthesizing the grammar𝐺 = (𝑁1, {𝑁1, 𝑁2, 𝑆},Δ, 𝑃), where
𝑃 is the set of productions below.

𝑁1 ← 𝑁1 ∧ 𝑁1 | 𝑁1 ∨ 𝑁1 | ¬𝑥1 ∧ 𝑁2,

𝑁2 ← 𝑥1 | · · · | 𝑥𝑘

In the grammar ext(𝐺,𝐺 ′), the smallest𝑋∪𝑌 solution is¬𝑥1∧𝑥2, with size(¬𝑥1∧𝑥2, ext(𝐺,𝐺 ′)) =
2. And in fact, ext(𝐺,𝐺 ′) does not allow any non-generalizing expressions, so 𝐺 is a solution.

Example 4.4 (Arithmetic). Consider the DSL synthesis problem with nonterminals 𝑁 = 𝑁 ′ = {𝑆}
over a base language of arithmetic expressions on a single variable 𝑥 with grammar 𝐺 ′ below.

𝑆 ← 𝑆 + 𝑆 | 𝑆 − 𝑆 | 𝑆 × 𝑆 | − 𝑆 | 𝑥 | 1 | 2 | 3 | 4
There is one instance consisting of two input-output examples𝑋 = (1,−1),𝑌 = (4, 2). If order(𝑒, 𝑒 ′,𝐺)
is defined by depth(𝑒,𝐺) ≤ depth(𝑒 ′,𝐺), then the grammar𝐺 ′ itself is a solution. Although the non-
generalizing expression −𝑥 has a smaller parse tree in terms of size, it has the same parse tree depth
as the generalizing expression 𝑥 −2, namely depth(−𝑥, ext(𝐺 ′,𝐺 ′)) = depth(𝑥 −2, ext(𝐺 ′,𝐺 ′)) = 2,
and there are no non-generalizing expressions that are shallower.

5 DECIDABLE DSL SYNTHESIS
In this section we show that DSL synthesis is decidable over languages whose semantics can be
computed by finite tree automata and when the expression order is given by parse tree depth. We
consider the case when order(𝑒, 𝑒 ′,𝐺) is defined by depth(𝑒,𝐺) ≤ depth(𝑒 ′,𝐺), but the proof easily
adapts to the strict case, i.e., to depth(𝑒,𝐺) < depth(𝑒 ′,𝐺) as well. Furthermore, we show that, via
an encoding of grammars as trees, the set of solutions to DSL synthesis in fact corresponds to a
regular set of trees.
The proof involves construction of a tree automaton 𝐴 that reads finite trees which represent

grammars. We will design 𝐴 so that it accepts precisely those grammars which are solutions to
a given DSL synthesis problem. Existence and synthesis of solutions is then accomplished with
standard algorithms for checking emptiness of 𝐿(𝐴). A detailed construction of 𝐴 is given in
Section 5.2, but we begin with some intuition in Section 5.1 about equivalence of grammars, which
paves the way for an automaton to evaluate arbitrarily large grammars using state that is bounded
by the size of input learning instances.

5.1 Grammar Equivalence, Recursion Tables
The existence of a finite tree automaton𝐴 that accepts precisely those (trees representing) grammars
that solve a given DSL synthesis problem implies that, for any learning instances 𝐼1, . . . , 𝐼𝑙 , grammars
can be divided up into finitely-many equivalence classes based on how they behave over each 𝐼𝑖 .
Let us think about what would make two distinct grammars 𝐺1 and 𝐺2 equivalent with respect to
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12 P. Krogmeier, P. Madhusudan

𝐼1, . . . , 𝐼𝑙 . For the purposes of DSL synthesis, whether𝐺1 and𝐺2 are equivalent on these inputs will
depend on the specific examples contained in each instance 𝐼𝑖 . To simplify things, let us consider
how the grammars might behave over a single example structure𝑀 with expressions interpreted
over its domain 𝐷𝑀 .
Suppose 𝐺1 = (𝑁1, {𝑁1, 𝑁2},Δ, 𝑃1) and 𝐺2 = (𝑁1, {𝑁1, 𝑁2},Δ, 𝑃2), with Δ = {ℎ1, 𝑎0}. Now con-

sider a table whose entries are subsets of 𝐷 and whose columns and rows are indexed by non-
terminals and increasing integers, respectively. Suppose that 𝐷𝑀 = {1, 2, 3, 4}, and the symbols ℎ
and 𝑎 are interpreted as ℎ𝑀 (1) = 2, ℎ𝑀 (2) = 3, ℎ𝑀 (3) = 4, ℎ𝑀 (4) = 1, and 𝑎𝑀 = 1. Suppose 𝐺1 has
productions

𝑁1 ← ℎ(𝑎) | ℎ(𝑁2), 𝑁2 ← ℎ(𝑁1) .

Consider the simultaneous least fixpoint that defines 𝐿(𝐺1) as a set of Δ-terms. Though it is an
infinite set, if we consider terms modulo equivalence in𝑀 , then there are finitely-many equivalence
classes, and the fixpoint computation needs only four steps to reach a fixpoint. Beyond depth four,
expressions of𝐺1 repeat themselves on𝑀 . Figure 2 shows the stages of the fixpoint computation in
a table, where the entry at row 𝑖 and column 𝑗 contains the set of new domain elements achieved
in stage 𝑖 for nonterminal 𝑗 . Now suppose 𝐺2 has productions

𝑁1 ← ℎ5 (𝑎) | ℎ5 (𝑁2), 𝑁2 ← ℎ5 (𝑁1).

If we build the table for𝐺2 we find it is identical to the table for𝐺1. These tables give us a notion
of equivalence that captures whether two grammars have the same expressive power, parameterized
by parse tree depth, over fixed structures. This notion enables us to give a tree automata-based
solution for the DSL synthesis problem when the order on expressions is given by parse tree
depth. We will use such recursion tables, albeit with a more complex domain 𝐷 , in the automaton
construction to come.

𝑀 : Domain(𝑀) = {1, 2, 3, 4}
ℎ𝑀 (1) = 2, ℎ𝑀 (2) = 3,
ℎ𝑀 (3) = 4, ℎ𝑀 (4) = 1
𝑎𝑀 = 1

𝐺1 : 𝑁1 ← ℎ(𝑎) | ℎ(𝑁2)
𝑁2 ← ℎ(𝑁1)

𝐺2 : 𝑁1 ← ℎ5 (𝑎) | ℎ5 (𝑁2)
𝑁2 ← ℎ5 (𝑁1)

stage 𝑁1 𝑁2
0 ∅ ∅
1 {2} ∅
2 ∅ {3}
3 {4} ∅
4 ∅ {1}
5 ∅ ∅

Fig. 2. A recursion table for the grammar𝐺1 interpreted over𝑀 . Row 𝑖 column 𝑗 contains the domain values of
𝑀 that are first reached by a term at depth 𝑖 in𝐺1. The set of terms 𝐿(𝐺1) is infinite but, modulo equivalence
on 𝑀 , the language is completely explored after stage four. This same table is obtained for 𝐺2 interpreted
over𝑀 .

5.2 Automaton Construction
Themain aspect of our construction is an automaton𝐴𝐼 that accepts grammars that, when combined
with the base grammar, solve an instance 𝐼 = (𝑋,𝑌 ). Our final automaton 𝐴 will involve a product
over instances 𝐼 of the automata 𝐴𝐼 . For each example 𝑀 ∈ 𝑋 ∪ 𝑌 , we assume the existence of
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non-deterministic top-down tree automata 𝐴𝑀 and 𝐴¬𝑀 over alphabet Δ whose languages are

𝐿(𝐴𝑀 ) = {𝑒 ∈ 𝐿(𝐺 ′) : consistent(𝑒,𝑀)} and
𝐿(𝐴¬𝑀 ) = {𝑒 ∈ 𝐿(𝐺 ′) : ¬consistent(𝑒,𝑀)} ,

i.e., the sets of expressions in the base language which are consistent, or inconsistent, with the
example. Let us call these example automata. If we can in fact construct such automata for a given
base language, then our proof will apply. Using example automata, we can now define instance
automata 𝐴𝐼

1 and 𝐴
𝐼
2:

𝐴𝐼
1 B

>
𝑀 ∈𝑋∪𝑌

𝐴𝑀 𝐴𝐼
2 B

( >
𝑀 ∈𝑋

𝐴𝑀

)
×
( ⋃
𝑀 ∈𝑌

𝐴¬𝑀

)
.

We will sometimes omit the superscript and write 𝐴1 or 𝐴2 if the instance 𝐼 is clear from
context. The automaton 𝐴1 accepts all generalizing expressions and the automaton 𝐴2 accepts all
non-generalizing expressions:

𝐿(𝐴1) = {𝑒 ∈ 𝐿(𝐺 ′) : solves(𝑒, 𝐼 )} and
𝐿(𝐴2) = {𝑒 ∈ 𝐿(𝐺 ′) : solves(𝑒, 𝑋 ) ∧ ¬solves(𝑒, 𝑌 )} .

Let us call these instance automata. Our goal is to keep track of how these automata evaluate
over the expressions admitted by a grammar 𝐺 , in order of increasing parse tree depths.
Suppose 𝐴1 = (𝑄1,Δ, 𝐹1, 𝛿1) and 𝐴2 = (𝑄2,Δ, 𝐹2, 𝛿2). Note that, as constructed, 𝐴1 and 𝐴2 are

non-deterministic top-down automata. We will consider recursion tables (described in Section 5.1)
whose entries range over the powerset P(𝑄1 ⊔𝑄2). On an input grammar tree, our automaton 𝐴𝐼

will keep track of the rows of its corresponding recursion table.
Let us fix a grammar𝐺 = (𝑆, 𝑁 ,Δ, 𝑃). To define its recursion table𝑇 (𝐺), we order its nonterminals

as 𝑁1, 𝑁2, . . . , 𝑁𝑘 , with 𝑁1 = 𝑆 . Now let 𝐻𝑖 : P(𝑄1 ⊔𝑄2)𝑘 → P(𝑄1 ⊔𝑄2) be the operator defined
by the equation

𝐻𝑖 (𝑉 ) =
⋃

(𝑁𝑖 , 𝑡 ) ∈ 𝑃
⟦𝑡⟧𝐴1

𝑉
⊔ ⟦𝑡⟧𝐴2

𝑉
, 𝑉 ∈ P(𝑄1 ⊔𝑄2)𝑘 .

The notation ⟦𝑡⟧𝐴 𝑗

𝑉
denotes the subset of 𝑄 𝑗 reachable by running the automaton

𝐴′𝑗 =
(
𝑄 𝑗 ,Δ ⊔

{
rhs𝑁𝑠

: 𝑁𝑠 ∈ 𝑁
}
, 𝐹 𝑗 , 𝛿

′
𝑗

)
on term 𝑡 , where 𝛿 ′𝑗 (𝑞, rhs𝑁𝑠

) = true for each 𝑞 ∈ 𝑉𝑠 ∩𝑄 𝑗 and nonterminal 𝑁𝑠 and 𝛿 ′𝑗 (𝑞, 𝑥) = 𝛿 𝑗 (𝑞, 𝑥)
for all other 𝑞 ∈ 𝑄 𝑗 , 𝑥 ∈ Δ. The intuition is that 𝐻𝑖 computes the states of the instance automata
which can be reached by some expression generated by 𝑁𝑖 , given an assumption about what states
have already been reached.
The operator 𝐻 : P(𝑄1 ⊔ 𝑄2)𝑘 → P(𝑄1 ⊔ 𝑄2)𝑘 defined by 𝐻 (𝑉 ) = ⟨(𝐻1 (𝑉 ), . . . , 𝐻𝑘 (𝑉 )⟩ is

monotone with respect to component-wise inclusion of sets, and thus the following sequence
converges to a fixpoint after 𝑛 ≤ 𝑘 ( |𝑄1 | + |𝑄2 |) steps:

⟨∅, . . . , ∅⟩ C 𝑍0, 𝐻 (𝑍0), 𝐻 2 (𝑍0), . . . , 𝐻𝑛 (𝑍0) = 𝐻𝑛+1 (𝑍0).

We define the recursion table𝑇 (𝐺) as follows. There are 𝑘 = |𝑁 | columns and 𝑛∗ + 1 rows, where
𝑛∗ B 𝑘 ( |𝑄1 | + |𝑄2 |). The entry at row 𝑖 , column 𝑗 , denoted 𝑇 (𝐺) [𝑖, 𝑗]2, consists of the subset of

2For convenience, we index rows starting from zero and columns starting from one.
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14 P. Krogmeier, P. Madhusudan

values from 𝑄1 ⊔𝑄2 that are first achieved at parse tree depth 𝑖 for nonterminal 𝑁 𝑗 . For 1 ≤ 𝑗 ≤ 𝑘 :

𝑇 (𝐺) [0, 𝑗] B ∅
𝑇 (𝐺) [𝑖, 𝑗] B 𝐻 𝑖 (𝑍0)𝑗 \ 𝐻 𝑖−1 (𝑍0)𝑗 0 < 𝑖 ≤ 𝑛∗ .

By construction, for the ordering given by

depth(𝑒,𝐺) ≤ depth(𝑒 ′,𝐺),
a grammar 𝐺 solves 𝐼 = (𝑋,𝑌 ) if and only if there is some row 𝑖 for which 𝐹1 ∩𝑇 (𝐺) [𝑖, 1] ≠ ∅ and
for all 0 ≤ 𝑗 < 𝑖 we have 𝐹2 ∩𝑇 (𝐺) [ 𝑗, 1] = ∅. That is, the grammar 𝐺 solves 𝐼 if and only if there
is some depth 𝑖 at which it generates a solution for 𝑋 ∪ 𝑌 and all non-generalizing expressions
cannot be generated in depth less than 𝑖 . Let us say that column 1 of𝑇 (𝐺) is acceptable if this holds.

We can now define the tree automaton 𝐴𝐼 whose language is

𝐿(𝐴𝐼 ) = {𝑡 ∈ 𝑇Γ (Δ,𝑁 ) : solves(ext(dec(𝑡),𝐺 ′), 𝐼 )}.
First we summarize the high-level operation of 𝐴𝐼 as it relates to recursion tables and then give a
detailed construction after.

Summary. On an input 𝑡 ∈ 𝑇Γ (Δ,𝑁 ) , the automaton guesses the construction of the recursion
table 𝑇 (𝑡) B 𝑇 (ext(dec(𝑡),𝐺 ′)) starting from row 0 and working downward to row 𝑛∗. As it
guesses the rows, the automaton checks the newest row can be produced from preceding rows and
that each entry 𝑇 (𝑡) [𝑖, 𝑗] in fact contains 𝐻 𝑖 (𝑍0)𝑗 \ 𝐻 𝑖−1 (𝑍0)𝑗 , i.e., it is the set of all new domain
values that can be constructed using previously constructed domain values. To do this, it simulates
the instance automata to check that each value in𝑇 (𝑡) [𝑖, 𝑗] can be generated using some production
(𝑁 𝑗 , 𝛼), with each nonterminal that appears in 𝛼 interpreted as a value in a previously guessed
row. Furthermore, to check that 𝑇 (𝑡) [𝑖, 𝑗] contains all new values that can be generated at stage
𝑖 , the automaton tracks the set of remaining values that have not yet been generated by stage 𝑖 ,
namely (𝑄1 ⊔𝑄2) \ 𝐻 𝑖 (𝑍0)𝑗 , and verifies that none of them are generated in stage 𝑖 .
After each row, the automaton monitors whether column 1 is acceptable, as described earlier.

Recall this corresponds to checking whether a generalizing or non-generalizing expression is
encountered first. If no generalizing expression has been found yet and a non-generalizing one
is found at row 𝑖 , that is 𝐹2 ∩𝑇 (𝑡) [𝑖, 1] ≠ ∅ and for all 𝑗 ≤ 𝑖 we have 𝐹1 ∩𝑇 (𝑡) [ 𝑗, 1] = ∅, then the
automaton rejects. Otherwise, if a generalizing expression is found at row 𝑖 , that is 𝐹1∩𝑇 (𝑡) [𝑖, 1] ≠ ∅,
then the automaton accepts. Finally, if no generalizing expression is found at row 𝑛∗, equivalently
𝐹1 ∩𝑇 (𝑡) [𝑖, 1] = ∅ for all 0 ≤ 𝑖 ≤ 𝑛∗, then the automaton rejects.
Construction. We define a two-way alternating tree automaton 𝐴𝐼 = (𝑄, Γ(Δ, 𝑁 ), 𝐼 , 𝛿) with

acceptance defined by the existence of a finite run satisfying the transition formulas.
Recall 𝑘 is the number of nonterminals. We use 𝐷 as a shorthand for the powerset P(𝑄1 ⊔𝑄2),

and so possible rows of the recursion table are drawn from 𝐷𝑘 . We abuse notation by writing 𝐿 ∩𝐿′
and 𝐿 ∪ 𝐿′ for componentwise intersection and disjunction over vectors 𝐿, 𝐿′ ∈ 𝐷𝑘 . The automaton
operates in a few different modes. Inmode 1 it moves to the top of the input tree 𝑡 . Frommode 1 it
entersmode 2, in which it guesses which element𝐶 ∈ 𝐷𝑘 appears as the next row of𝑇 (𝑡). Inmode
3 it traverses the right spine of the tree to verify the guess𝐶 . For each nonterminal 𝑁𝑖 encountered
along the right spine of 𝑡 , this involves guessing which subset 𝑈 ⊆ 𝐶𝑖 a given production for 𝑁𝑖

should reach, given a vector 𝐿 ∈ 𝐷𝑘 consisting of all previously reached values for all nonterminals.
Inmode 4 andmode 5 it attempts to verify these guesses. Inmode 4, it simulates the modified
instance automata 𝐴′1 on the right-hand side of a given production to check that all values in𝑈 are
reachable, assuming those in 𝐿 are reachable. In mode 5, it simulates 𝐴′2 to check that all values in
𝑅𝑖 B (𝑄1 ⊔𝑄2) \ (𝐿 ∪𝐶)𝑖 are not reachable, again assuming those in 𝐿 are reachable. Note that
after the automaton reaches the end of the productions on the right spine of 𝑡 , it simulates modes
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4 and 5 as if the productions 𝑃 ′ from the base grammar 𝐺 ′ were present in the tree. Finally, it
enters mode 6 to check if the partially guessed column corresponding to the starting nonterminal
is already acceptable, and if so it accepts. Otherwise it verifies that no non-generalizing expression
has yet been constructed and enters mode 1 to return to the root of 𝑡 .
We describe the states 𝑄 and their transition formulas grouped by functionality. Below we use

𝑖, 𝑗 ∈ [𝑘],𝑚 ∈ {1, 2}, 𝑢 ∈ 𝑄1 ⊔𝑄2, 𝑢1 ∈ 𝑄1, 𝑢2 ∈ 𝑄2, 𝑈 ,𝑉 ∈ 𝐷 , 𝐿, 𝑅, 𝑅′,𝐶,𝐶 ′,𝑊 ∈ 𝐷𝑘 , 𝑁𝑖 , 𝑁 𝑗 ∈ 𝑁 ,
𝑓 ∈ Δ𝑟 , and 𝑡1, . . . , 𝑡𝑟 ∈ 𝑇Δ ({rhs𝑁𝑖

: 𝑁𝑖 ∈ 𝑁 }). We use an underscore “_” to describe a default
transition when no other case matches.

Mode 1. Reset to the top of the input tree. States are drawn from

M1 B (𝐷𝑘 )3 × {reset, start}.

• 𝛿 (⟨𝐿,𝐶, 𝑅, reset⟩, root) = (down, ⟨𝐿,𝐶, 𝑅, start⟩)
• 𝛿 (⟨𝐿,𝐶, 𝑅, reset⟩, _) = (up, ⟨𝐿,𝐶, 𝑅, reset⟩)
• 𝛿 (⟨𝐿,𝐶, 𝑅, start⟩, lhs𝑁𝑖

) = (stay, ⟨𝐿,𝐶, 𝑅, 𝑖, row⟩)

Mode 2. Guess next row of the recursion table. States drawn from

M2 B (𝐷𝑘 )3 × [𝑐] × {row}.

• 𝛿 (⟨𝐿,𝐶, 𝑅, 𝑖, row⟩, _) =∨
(𝐶′,𝑅′) ∈ split(𝑅) (stay, ⟨𝐿 ∪𝐶,𝐶 ′,𝐶 ′, 𝑅′, 𝑖, prod⟩)

with split(𝑅) B
{
(𝐶 ′, 𝑅′) ∈ 𝐷𝑘 × 𝐷𝑘 : 𝐶 ′ ∪ 𝑅′ = 𝑅, 𝐶 ′ ≠ {∅}𝑘

}
Mode 3. Guess the contributions of productions to each row entry. States drawn from

M3 B (𝐷𝑘 )4 × [𝑐] × {prod}.

• 𝛿 (⟨𝐿,𝐶,𝑊 , 𝑅, 𝑖, prod⟩, lhs𝑁 𝑗
) =∨

{ (𝑈 ,𝑉 ) :𝑈∪𝑉=𝐶 𝑗 } (left, ⟨𝐿,𝑈 , hit⟩) ∧ (left, ⟨𝐿, 𝑅 𝑗 ,miss⟩) ∧
(right, ⟨𝐿, ⟨𝐶1, . . . ,𝐶 𝑗−1,𝑉 , . . . ,𝐶𝑐⟩,𝑊 , 𝑅, 𝑖, prod⟩)
• 𝛿 (⟨𝐿,𝐶,𝑊 , 𝑅, 𝑖, prod⟩, end) =

if ∃(𝑁 𝑗 ∈ 𝑁 \ 𝑁 ′).𝐶 𝑗 ≠ ∅
then false
else (

(stay, ⟨𝐿𝑖 ∪𝑊𝑖 , solve⟩)

∨
(
(stay, ⟨𝐿,𝑊 , 𝑅, reset⟩)) ∧ (stay, ⟨𝐿𝑖 ∪𝑊𝑖 , ok⟩)

) )
∧
( ∧

𝑁 𝑗 ∈𝑁 ′
∧

𝑢∈𝐶 𝑗

∨
(𝑁 𝑗 ,𝛼) ∈𝑃 ′ (stay, ⟨𝐿, {𝑢}, 𝛼, hit⟩)

)
∧
( ∧

𝑁 𝑗 ∈𝑁 ′
∧
(𝑁 𝑗 ,𝛼) ∈𝑃 ′ (stay, ⟨𝐿, 𝑅 𝑗 , 𝛼,miss⟩)

)
Mode 4. Check a set of values can be reached. States drawn from
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M4 B M4a ∪M4b

M4a B 𝐷𝑘 × 𝐷 × {hit} ∪ ((𝑄1 ⊔𝑄2) × (𝐷𝑘 × {1, 2}))
M4b B

(
𝐷𝑘 × 𝐷 × subterms(𝑃 ′) × {hit}

)
∪
(
(𝑄1 ⊔𝑄2) × (𝐷𝑘 × {1, 2} × subterms(𝑃 ′))

)
,

where subterms(𝑃 ′) = ⋃
(𝑁𝑖 , 𝛼) ∈ 𝑃 ′ subterms(𝛼)

Transitions for M4a:
• 𝛿 (⟨𝐿,𝑈 , hit⟩, _) =∧

𝑢1∈𝑈∩𝑄1 (stay, ⟨𝑢1, ⟨𝐿, 1⟩⟩) ∧
∧

𝑢2∈𝑈∩𝑄2 (stay, ⟨𝑢2, ⟨𝐿, 2⟩⟩)
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚⟩⟩, 𝑥) = adorn(⟨𝐿,𝑚⟩, 𝛿𝑚 (𝑢,𝑦)), 𝑥 ∈ Δ
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚⟩⟩, rhs𝑁𝑖

) = true if 𝑢 ∈ 𝐿𝑖
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚⟩⟩, rhs𝑁𝑖

) = false if 𝑢 ∉ 𝐿𝑖

Transitions for M4b:
• 𝛿 (⟨𝐿,𝑈 , 𝛼, hit⟩, _) =∧

𝑢1∈𝑈∩𝑄1 (stay, ⟨𝑢1, ⟨𝐿, 1, 𝛼⟩⟩) ∧
∧

𝑢2∈𝑈∩𝑄2 (stay, ⟨𝑢2, ⟨𝐿, 2, 𝛼⟩⟩)
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚, 𝑓 (𝑡1, . . . , 𝑡𝑟 )⟩⟩, _) = adorn′(⟨𝐿,𝑚, 𝑡1, . . . , 𝑡𝑟 ⟩, 𝛿𝑚 (𝑢, 𝑓 ))
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚, rhs𝑁𝑖

⟩⟩, _) = true if 𝑢 ∈ 𝐿𝑖
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚, rhs𝑁𝑖

⟩⟩, _) = false if 𝑢 ∉ 𝐿𝑖

The notation adorn(𝑠, 𝜑) represents the transition formula obtained by replacing each atom (𝑖, 𝑞)
in the Boolean formula 𝜑 by the atom (𝑖, ⟨𝑞, 𝑠⟩). The notation adorn′(⟨𝑠, 𝑡1, . . . , 𝑡𝑟 ⟩, 𝜑) represents
the transition formula obtained by replacing each atom (𝑖, 𝑞) in 𝜑 by the atom (stay, ⟨𝑞, ⟨𝑠, 𝑡𝑖⟩⟩)3.

Mode 5. Check values cannot be reached. States drawn from

M5 B M5a ∪M5b

M5a B 𝐷𝑘 × 𝐷 × {miss} ∪ ((𝑄1 ⊔𝑄2) × (𝐷𝑘 × {1, 2} × {⊥}))
M5b B

(
𝐷𝑘 × 𝐷 × subterms(𝑃 ′) × {miss}

)
∪
(
(𝑄1 ⊔𝑄2) × (𝐷𝑘 × {1, 2} × {⊥} × subterms(𝑃 ′))

)
Transitions for M5a:
• 𝛿 (⟨𝐿,𝑈 ,miss⟩, _) =∧

𝑢∈𝑈∩𝑄1 (stay, ⟨𝑢, ⟨𝐿, 1,⊥⟩⟩) ∧
∧

𝑢∈𝑈∩𝑄2 (stay, ⟨𝑢, ⟨𝐿, 2,⊥⟩⟩)
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥⟩⟩, 𝑥) = adorn(⟨𝐿,𝑚,⊥⟩, dual(𝛿𝑚 (𝑢, 𝑥))), 𝑥 ∈ Δ
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥⟩⟩, rhs𝑁𝑖

) = true if 𝑢 ∉ 𝐿𝑖

• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥⟩⟩, rhs𝑁𝑖
) = false if 𝑢 ∈ 𝐿𝑖

Transitions for M5b:
• 𝛿 (⟨𝐿,𝑈 , 𝛼,miss⟩, _) =∧

𝑢∈𝑈∩𝑄1 (stay, ⟨𝑢, ⟨𝐿, 1,⊥, 𝛼⟩⟩) ∧
∧

𝑢∈𝑈∩𝑄2 (stay, ⟨𝑢, ⟨𝐿, 2,⊥, 𝛼⟩⟩)

3Here we assume directions in 𝛿1 and 𝛿2 are the numbers 1(left) , 2(right) , 3 . . ., etc.
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• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥, 𝑓 (𝑡1, . . . , 𝑡𝑟 )⟩⟩, _) =
adorn′(⟨𝐿,𝑚,⊥, 𝑡1, . . . , 𝑡𝑟 ⟩, dual(𝛿𝑚 (𝑢, 𝑓 )))
• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥, rhs𝑁𝑖

⟩⟩, _) = true if 𝑢 ∉ 𝐿𝑖

• 𝛿 (⟨𝑢, ⟨𝐿,𝑚,⊥, rhs𝑁𝑖
⟩⟩, _) = false if 𝑢 ∈ 𝐿𝑖

The notation dual(𝜑) represents a transition formula obtained by replacing conjunction with
disjunction and vice versa in the (positive) Boolean formula 𝜑 .

Mode 6. Check the first column is acceptable or could still be acceptable later. States drawn from

M6 B 𝐷 × {solve, ok}.
• 𝛿 (⟨𝑈 , solve⟩, _) = if 𝑈 ∩ 𝐹1 ≠ ∅ then true else false

• 𝛿 (⟨𝑈 , ok⟩, _) = if 𝑈 ∩ 𝐹2 ≠ ∅ then false else true

Any transition not described by the rules above has transition formula false. The full set of
states for the automaton 𝐴𝐼 is 𝑄 B M1 ⊔M2 ⊔M3 ⊔M4 ⊔M5 ⊔M6, and the initial state set is
𝐼 = {⟨∅, ∅, {𝑄1 ⊔𝑄2}𝑘 , reset⟩}. By construction, we have the following.

Lemma 5.1. 𝐿(𝐴𝐼 ) = {𝑡 ∈ 𝑇Γ (Δ,𝑁 ) : solves(ext(dec(𝑡),𝐺 ′), 𝐼 )}.

Proof. Appendix A.1. □

5.3 Main Theorem
The construction of 𝐴𝐼 relied on the assumption that, for each example, we can construct finite
tree automata that recognize the sets of all expressions in the base language that are consistent or
inconsistent with that example. There is a large class of languages for which this assumption holds,
a class which was identified in [Krogmeier and Madhusudan 2022, 2023] and called FAC languages.
Our proof thus yields decidability of (depth order) DSL synthesis for all FAC base languages at
once, including regular expressions on finite words, propositional modal logic on finite Kripke
structures, CTL on finite Kripke structures, LTL over periodic words, context-free grammars on
finite words, first-order queries over the ordered rational numbers, and the DSL from Gulwani’s
work on spreadsheet programs [Gulwani 2011], in addition to several finite-variable logics.

Our main theorem is the following:

Theorem 5.2. The DSL synthesis problem is decidable for FAC languages with expressions ordered
by parse tree depth. Furthermore, for such languages the set of solutions corresponds to a regular set of
trees.

Proof. Given meta-grammar G and instances 𝐼1, . . . , 𝐼𝑙 , we construct the product

𝐴 B 𝐴(G) × convert
(>

𝑖∈[𝑙 ]𝐴𝐼𝑖

)
,

where convert(𝐵) is a procedure for converting a two-way alternating tree automaton 𝐵 to a
top-down non-deterministic automaton in time exp( |𝐵 |), as explained in [Cachat 2002; Vardi 1998].
We have by construction and Lemma 5.1 that

𝐿(𝐴) =
{
𝑡 ∈ 𝐿(G) : ∧𝑖∈[𝑙 ]solves(ext(dec(𝑡),𝐺 ′), 𝐼𝑖 )

}
.

Existence of solutions is decided by an automaton emptiness procedure which runs in time poly( |𝐴|),
and solutions can be synthesized by outputting dec(𝑡) for any 𝑡 ∈ 𝐿(𝐴) in the same time. □

Corollary 5.3. DSL synthesis is decidable in time

poly( |G|) · exp(𝑙 · exp(𝑚))),
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where 𝑙 is the number of few-shot learning instances and𝑚 is the maximum size over all instance
automata.

We note that, for an instance 𝐼 = (𝑋,𝑌 ), the instance automata size grows exponentially in the
number of examples |𝑋 | + |𝑌 |.

6 DECIDABLE GRAMMAR SYNTHESIS
In this section, we show decidability of a natural relaxation of DSL synthesis, which we call
grammar synthesis. Given a set of few-shot learning instances𝑋1, . . . , 𝑋𝑙 , alongwith ameta-grammar
constraint G, the requirement is to synthesize a grammar 𝐺 satisfying G such that each 𝑋 𝑗 has a
solution in 𝐺 . There is no longer a constraint on the order of expressions and thus the learning
instances are sets of examples, with no separation into training and testing sets. This enables a
simpler decision procedure.

6.1 Grammar Synthesis Problem
The grammar synthesis problem is defined as follows.

Problem (Grammar Synthesis).
Parameters:
• Finite set of nonterminals 𝑁
• Base language with 𝐺 ′ = (𝑆 ′, 𝑁 ′,Δ, 𝑃 ′) and 𝑁 ′ ⊆ 𝑁

Input:
• Example sets 𝑋1, . . . , 𝑋𝑙

• Meta-grammar G over Γ(Δ, 𝑁 )
Output: A grammar 𝐺 = (𝑆, 𝑁 ,Δ, 𝑃) such that:
(1) for each 𝑗 , there exists 𝑒 ∈ ext(𝐺,𝐺 ′) that solves 𝑋 𝑗

(2) it satisfies constraints imposed by G, i.e., enc(𝐺) ∈ 𝐿(G)

We write solves(𝐺,𝑋 ) if Item 1 holds for a grammar 𝐺 and set of examples 𝑋 .

6.2 Automaton Construction
We now establish decidability of the grammar synthesis problem. The decision procedure has the
same high-level structure as in Section 5. We construct tree automata 𝐴𝑋 that read grammar trees 𝑡
as input and accept if solves(dec(𝑡), 𝑋 ) holds. The product automaton over all example sets𝑋 𝑗 gives
us an automaton from which we can extract a grammar that solves all sets. First we summarize the
operation of 𝐴𝑋 and then give a more detailed construction after.
Summary. The automaton 𝐴𝑋 reads a grammar tree over alphabet Γ(Δ, 𝑁 ), as before. But now

it no longer needs to guess and verify the recursion table for the grammar, given that grammar
synthesis merely requires the existence of at least one solution for 𝑋 . Similar to𝐴𝐼 from Section 5.2,
the automaton 𝐴𝑋 explores potential solutions by simulating an automaton 𝐴1, here defined as

𝐴1 B
>
𝑀 ∈𝑋

𝐴𝑀 , with 𝐿(𝐴1) = {𝑒 ∈ 𝐿(𝐺 ′) : solves(𝑒, 𝑋 )} ,

which accepts all expressions in the base language that solve 𝑋 , and where for each𝑀 ∈ 𝑋 , 𝐴𝑀 is
an example automaton as described in Section 5.2. Unlike the previous construction of 𝐴𝐼 , 𝐴𝑋 does
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not need to keep track of the depths at which various properties are achieved by expressions in the
grammar. This simplifies its description considerably.

Intuitively, the automaton operates by walking up and down the input grammar tree to guess a
parse tree for an expression 𝑒 that solves 𝑋 . When it reads the right-hand side of a production, it
simulates 𝐴1, stopping with acceptance if it completes a parse tree branch on which 𝐴1 satisfies its
transition formula. Otherwise it rejects if𝐴1 is not satisfied, or it continues guessing the construction
of a parse tree if it reads a nonterminal symbol. Each time it reads a nonterminal, it must guess
which of the productions for that nonterminal should be used. If any sequence of such guesses and
simulations of 𝐴1 leads to a completed parse tree which satisfies the transition formulae for 𝐴1,
then the existence of a solution in the grammar is guaranteed, and vice versa.

Construction. Suppose 𝐴1 = (𝑄1,Δ, 𝐼1, 𝛿1). We define a two-way alternating tree automaton
𝐴𝑋 = (𝑄, Γ(Δ, 𝑁 ), 𝐼 , 𝛿). The automaton operates in two modes. Inmode 1, it walks to the top spine
of the input tree in search of productions for a specific nonterminal. Having found a production, it
enters mode 2, in which it moves down into the term corresponding to the right-hand side of the
production, simulating 𝐴1 as it goes.

Below we use 𝑁𝑖 , 𝑁 𝑗 ∈ 𝑁 , 𝑞 ∈ 𝑄1, 𝑥, 𝑓 ∈ Δ, and 𝑡1, . . . , 𝑡𝑟 ∈ 𝑇Δ ({rhs𝑁𝑖
: 𝑁𝑖 ∈ 𝑁 }). Again, we use

an underscore “_” to describe a default transition when no other case matches.

Mode 1. Find productions. States are drawn from

M1 B
(
𝑄1 × {start}

)
∪
(
𝑄1 × 𝑁

)
.

• 𝛿 (⟨𝑞, start⟩, root) = (down, ⟨𝑞, start⟩)
• 𝛿 (⟨𝑞, start⟩, lhs𝑁𝑖

) = (stay, ⟨𝑞, 𝑁𝑖⟩)
• 𝛿 (⟨𝑞, 𝑁𝑖⟩, lhs𝑁𝑖

) = (up, ⟨𝑞, 𝑁𝑖⟩) ∨ (left, 𝑞)
∨(right, ⟨𝑞, 𝑁𝑖⟩) ∨

(∨
(𝑁𝑖 , 𝛼) ∈𝑃 ′ (stay, ⟨𝑞, 𝛼⟩)

)
• 𝛿 (⟨𝑞, 𝑁𝑖⟩, lhs𝑁 𝑗

) = (up, ⟨𝑞, 𝑁𝑖⟩) ∨ (right, ⟨𝑞, 𝑁𝑖⟩), 𝑁𝑖 ≠ 𝑁 𝑗

• 𝛿 (⟨𝑞, 𝑁𝑖⟩, _) = (up, ⟨𝑞, 𝑁𝑖⟩) ∨
(∨
(𝑁𝑖 , 𝛼) ∈𝑃 ′ (stay, ⟨𝑞, 𝛼⟩)

)
Mode 2. Read productions. States drawn from

M2 B 𝑄1 ∪
(
𝑄1 × subterms(𝑃 ′)

)
,

where subterms(𝑃 ′) = ⋃
(𝑁𝑖 , 𝛼) ∈ 𝑃 ′ subterms(𝛼).

• 𝛿 (𝑞, 𝑥) = 𝛿1 (𝑞, 𝑥)
• 𝛿 (𝑞, rhs𝑁𝑖

) = (stay, ⟨𝑞, 𝑁𝑖⟩)
• 𝛿 (⟨𝑞, 𝑓 (𝑡1, . . . , 𝑡𝑟 )⟩, _) = adorn(𝑡1, . . . , 𝑡𝑟 , 𝛿1 (𝑞, 𝑓 ))
• 𝛿 (⟨𝑞, rhs𝑁𝑖

⟩, _) = (stay, ⟨𝑞, 𝑁𝑖⟩) ∨
(∨
(𝑁𝑖 , 𝛼) ∈𝑃 ′ (stay, ⟨𝑞, 𝛼⟩)

)
The notation adorn(𝑡1, . . . , 𝑡𝑟 , 𝜑) represents a transition formula obtained by replacing each atom

of the form (𝑖, 𝑞) in the Boolean formula 𝜑 by the atom (stay, ⟨𝑞, 𝑡𝑖⟩)4.
Any transition not described by the rules above has transition formula false. The full set of states

for the automaton 𝐴𝑋 is 𝑄 B M1 ⊔M2, and the initial state set is 𝐼 = {⟨𝑞, start⟩ : 𝑞 ∈ 𝐼1} ⊆ M1.
We have the following by construction.

Lemma 6.1. 𝐿(𝐴𝑋 ) =
{
𝑡 ∈ 𝑇Γ (Δ,𝑁 ) : solves(ext(dec(𝑡),𝐺 ′), 𝑋 )

}
.

Proof. Appendix B.1. □

4Again, we assume directions in 𝛿1 are the numbers 1(left) , 2(right) , 3 . . ., etc.
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We use this to prove the following theorem:

Theorem 6.2. The grammar synthesis problem is decidable for FAC languages. Furthermore, the set
of solutions corresponds to a regular set of trees.

Proof. Given meta-grammar G and instances 𝑋1, . . . , 𝑋𝑙 , we construct the product

𝐴 B 𝐴(G) × convert
(>

𝑖∈[𝑙 ]𝐴𝑋𝑖

)5 .
By construction and Lemma 6.1 we have

𝐿(𝐴) =
{
𝑡 ∈ 𝐿(G) : ∧𝑖∈[𝑙 ]solves(ext(dec(𝑡),𝐺 ′), 𝑋𝑖 )

}
.

Existence of solutions is decided by an automaton emptiness procedure which runs in time poly( |𝐴|),
and solutions can be synthesized by outputting dec(𝑡) for any 𝑡 ∈ 𝐿(𝐴) in the same time. □

Corollary 6.3. Grammar synthesis is decidable in time

poly( |G|) · exp(𝑙 ·𝑚)),
where 𝑙 is the number of instances and𝑚 is the maximum size over all instance automata 𝐴𝑋 .

6.3 Remark on constructions
The ideas behind the constructions in Sections 5 and 6 can be used to prove the following more
general statements. In the case of Section 6, we have the following.

Lemma 6.4. Given a tree automaton 𝐴, there is a tree automaton 𝐵𝐴 that accepts an encoding of a
grammar 𝐺 if and only if 𝐿(𝐴) ∩ 𝐿(𝐺) ≠ ∅.

In the context of Section 6, the automaton𝐵𝐴 corresponds to𝐴𝑋 and the automaton𝐴 corresponds
to the automaton 𝐴1.
The more complex construction from Section 5 corresponds to the following.

Lemma 6.5. Given tree automata 𝐴 and 𝐵, there is a tree automaton 𝐶 that accepts an encoding of
a grammar 𝐺 if and only if there is some 𝑖 ∈ N such that 𝐿(𝐴) ∩ 𝐿(𝐺)𝑖 ≠ ∅ and 𝐿(𝐵) ∩ 𝐿(𝐺)𝑖 = ∅,
where 𝐿(𝐺)𝑖 is the set of terms obtained at iteration 𝑖 of the fixpoint computation for 𝐿(𝐺).

In this case, the automata 𝐴 and 𝐵 correspond to 𝐴𝐼
1 and 𝐴

𝐼
2.

7 RELATEDWORK
Grammar induction. There is a large body of work on the synthesis of grammar/automata
representations of formal languages, e.g., the well-known L* [Angluin 1987] and RPNI [Oncina
and García 1992] algorithms for learning representations of regular languages in terms of DFAs.
Vanlehn and Ball [Vanlehn and Ball 1987] explored an approach to context-free grammar induction
based on version space algebra [Mitchell 1982]. The use of tree automata in our decidability proofs
is related to version space algebra, the main point of overlap being the idea to consider equivalence
classes of grammars and expressions modulo examples.
Applications of grammar induction to learning valid program inputs, fuzzing, test generation,

and learning context-free grammars that match labeled examples of different data formats have
spurred recent research in this vein [Bastani et al. 2017; Kulkarni et al. 2021; Miltner et al. 2023].
These are very different problems than what we consider, as the specification is driven by the syntax
of examples, i.e., the structure of finite words; in contrast, the properties of grammars relevant to
this paper are driven by language semantics and its relationship with input example data. And most
5The convert procedure is the same as that in Section 5.3.
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importantly, we look for grammars with specific biases, which are specified by few-shot learning
probelms split into training and testing sets.

Program synthesis. The significance of grammar and inductive bias in program synthesis is
well recognized. The tradeoff between expressive grammars and synthesizer performance was
studied for SyGuS problems in [Padhi et al. 2019]. The well-known case of FlashFill [Gulwani 2011]
was able to scale program synthesis from examples to practial use cases in Microsoft Excel. One of
the major reasons for success was a carefully crafted DSL that successfully navigated a tradeoff
between expressivity and tractable search. Practical implementations of DSL synthesis could enable
easier design of synthesizers for new programming-by-example domains.

Library learning. Recent work explores the problem of compressing a given corpus of programs
by finding commonly occurring programming patterns and abstracting them as functions [Bowers
et al. 2023; Cao et al. 2023]. In each of these, the goal is to find a set of programs which can be
composed to generate the input corpus, but which also serves to compress it. Hence the problem
they study is quite different, as there is no notion of learning from examples. Closer in spirit to our
work is DreamCoder [Ellis et al. 2023], which solves few-shot learning instances by iteratively
growing a library of programs that capture patterns used in previous solutions. Main differences
with our work are that DreamCoder does not give any formal guarantee about how well learned
abstractions generalize. It also does not produce grammars, which is a subtle difference in the
context of our problem. Intuitively, a grammar can be thought of as a library of programs organized
into equivalence classes, where programs must compose with each other in ways that respect the
classes.

Applications of tree automata. Tree automata underlie several deep results on synthesis of
finite-state systems, e.g., the solutions to Church’s problem [Church 1963] by Büchi and Landwe-
ber [Buchi and Landweber 1969] and Rabin [Rabin 1969]. A different use of tree automata gives
the foundation for fixed-parameter tractable algorithms for model checking on parameterized
classes of graphs [Courcelle and Engelfriet 2012; Habel 1992]. Our use of tree automata is quite
different than the latter use, which uses automata to read in decompositions of graphs in order
to check whether they satisfy a fixed property in a logic. The tree automata in this paper instead
read parse trees of formulas or programs in order to check whether they are satisfied by a fixed
example structure, and there is no restriction of the examples to efficient classes of structures. We
simply need that given an arbitrary finitely-presented structure, we can construct a tree automaton
that reads parse trees and evaluates them over the structure. This idea was used recently to prove
decidability results for learning in finite-variable logics [Krogmeier and Madhusudan 2022] and
several other symbolic languages [Krogmeier and Madhusudan 2023], and the decidability results
of this paper apply to DSL synthesis over all languages studied there. The idea has also been used
recently for decidability results in program synthesis, e.g., synthesizing reactive programs from
formal specifications [Madhusudan 2011] and uninterpreted programs from sketches [Krogmeier
et al. 2020], as well as practical algorithmic foundations for program synthesis, e.g., [Gulwani 2011;
Polozov and Gulwani 2015; Wang et al. 2017b, 2018b].

Synthesizing abstractions for program synthesis. The idea of using abstract domains and
transformers for program synthesis can help make search more tractable when suitable abstractions
can be designed manually, e.g., [Guria et al. 2023; Wang et al. 2017a,b], but often they are hard
to design. Some recent work has explored synthesizing the abstract domain and transformers
automatically for programming-by-example problems [Wang et al. 2018a].

8 CONCLUSION
In this work we studied the problem of synthesizing DSLs for few-shot learning in symbolic domains.
We presented a novel formulation of DSL synthesis that uses a learning specification, where the
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goal is to learn a DSL given some instances of few-shot learning problems as input. The learned DSL
is defined using a grammar, which itself is defined over a base language whose semantics is used to
give semantics to the DSL. Each few-shot learning instance in the input is split into training and
testing datasets, which indicate an expectation about the kinds of properties a useful DSL should be
capable of expressing using formulas or programs of small complexity. The notion of complexity is
formalized in terms of a fixed ordering < on expressions which can be computed given a DSL and
two expressions in the language. The problem asks for a grammar which is expressive enough to
contain solutions for each few-shot learning instance in the input, while ensuring that for each one,
the smallest expressions according to < that are consistent with the training set are also consistent
with the testing set. In cases where expressions can easily be enumerated in increasing order, e.g.,
parse tree size or depth, a DSL satsifying the problem specification can be used to solve few-shot
learning problems by enumerating small expressions and picking the first one that is consistent
with the training dataset. Intuitively, the DSL synthesis problem asks for a DSL such that Occam’s
razor, i.e., picking the simplest concept consistent with input (training) data, results in expressions
which generalize well, in the sense that they are also consistent with testing data.

We proved that DSL synthesis is decidable when expressions are ordered by parse tree depth for
any base language whose semantics can be evaluated by a finite tree automaton. Specifically, what
this means is that for any fixed example, a tree automaton can be constructed that evaluates the
semantics of arbitrarily large expressions in the base language. This class of base languages includes
several natural ones from the literature, including regular expressions on finite words, propositional
modal logic and computation tree logic on finite Kripke structures, linear temporal logic over
periodic words, context-free grammars on finite words, first-order queries over the ordered rational
numbers, and the language from Gulwani’s work on program synthesis for spreadsheets [Gulwani
2011], in addition to several finite-variable logics.
The proof of decidability relied on constructing tree automata which read trees that encode

grammars and verify that solutions to the input learning instances exist in the grammar, and
furthermore, that expressions which are consistent only with the training dataset are not easy to
express. Existence of solutions to DSL synthesis was reduced to tree automaton non-emptiness,
and thus smallest grammars solving the problem can be constructed using standard tree automaton
emptiness checking algorithms.
We also studied the grammar synthesis problem, a relaxation of DSL synthesis which removes

the ordering requirement and simply asks for a DSL that contains solutions for each few-shot
learning problem presented in the input. We proved decidability in this setting as well and obtained
a more efficient decision procedure.
In future work, we plan to explore practical implementations for solving DSL synthesis. It will

be interesting to explore whether practical DSL synthesis can indeed be realized using few-shot
learning problems as specifications, and if so, how much data is needed to arrive at useful DSLs in
specific domains.
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